Our findings highlight the presence of -3Rha-2Ara-3hederagenin oligosaccharidic sequence usually described in saponins from Sapindoideae subfamily of Sapindaceae family, as well as farnesol glycosides, and represent therefore a valuable contribution to the chemotaxonomy of the Sapindoideae subfamily.The growing global need for latex is driving rubber plantation (RP) expansion since the last century, with >2 Mha of cultivation area being established in the last decade. Southeast Asia is the hotspot for rubber cultivation at other land-use costs. Although rubber cultivation has improved the economic status of farmers, it has altered the habitat's ecology and ecosystem functions (EF). However, studies on the impacts of RP on EF are limited, and a clear overview is not available. To bridge this gap, we conducted an inclusive review of the EF of RP, including soil carbon storage, aboveground biomass (AGB) and belowground biomass (BGB), litter production and decomposition, respiration, and biodiversity (plants, animals, soil fauna, and microbes). We compared the EF in RP (monoculture) with those in forests because the conversion of forests to RP is prevalent in the tropics and because most RP studies used forests as reference ecosystems. We found RP generally have lower EF than forests. The impacts of RP on some EF are more severe (e.g., AGB, BGB, and plant diversity), causing decreases of >55%, and the effects are consistently negative irrespective of plantation age. However, including agroforestry or polyculture, integrated pest management, cover cropping, mulching, and composting can improve the EF in RP to some extent. We highlighted research gaps, particularly substantial research gaps concerning the influence of plant diversity treatments (i.e., agroforestry) performed in RP on EF. Additionally, more empirical data on the significance of spatial and temporal levels are required, such as how the impact on EF could vary with climate and RP age, as we showed some examples where EF differs spatially and temporally. More importantly, further research on plantation management to offset EF losses is needed. Finally, we emphasized knowledge gaps and suggested future directions and policies for improving EF in RP.Medical waste (MW) has exploded since the COVID-19 pandemic and aroused great concern to MW disposal. Meanwhile, the energy recovery for MW disposal is necessary due to high heat value of MW. Harmless disposal of MW with economically and environmentally sustainable technologies along with higher energy recovery is urgently required, and their energy recovery efficiencies and environmental impacts reduction due to energy recovery are key issues. In this study, five MW disposal technologies, i.e. rotary kiln incineration, pyrolysis incineration, plasma melting, steam sterilization and microwave sterilization, were evaluated and compared via energy recovery analysis (ERA), life cycle assessment (LCA), and life cycle costing (LCC) methods. Furthermore, three MW incineration technologies with further energy recovery and two sterilization followed by co-incineration technologies were analyzed to explore their improvement potential of energy recovery and environment benefits via scenario analysis. ERA results reveal that the energy recovery efficiencies of "steam and microwave sterilization + incineration" are the highest (≥83.4%), while that of the plasma melting is the lowest (19.2%). LCA results show that "microwave sterilization + landfill" outperforms others while the plasma melting exhibits the worst, electricity is the most significant contributor to the environmental impacts of five technologies. Scenario analysis shows that the overall environmental impact of all technologies reduced by at least 45% after further heat utilization. LCC results demonstrate that pyrolysis incineration delivers the lowest economic cost, while plasma melting is the highest. Co-incineration of sterilized MW and municipal solid waste could be recommended.How stoichiometry in different ecosystem components responds to long-term nitrogen (N) addition is crucial for understanding within-ecosystem biogeochemistry cycling processes in the context of global change. To explore the effects of long-term N addition on nutrient stoichiometry in soil and plant components in forest ecosystem, a 10-year N addition experiment using ammonium nitrate (NH4NO3) was conducted in a bamboo forest in the Rainy Zone of West China, where the background N deposition is the highest in the world. Four N treatment levels (+0, +50, +150, +300 kg N ha-1 yr-1) (CK, LN, MN, HN) were applied monthly since November 2007, and then, the CNP stoichiometry of soil, microbial biomass, and enzymes in rhizosphere soil and bulk soil, and plant organs were measured. N addition decreased the stoichiometry of CNP of soil, microbial biomass, and enzymes. Soil CNP change under N addition treatments was stronger in bulk soil, while CNP changes for microbial biomass and enzyme activity were significant in rh soils.Graphitic carbon nitride (g-C3N4) offers exciting opportunities for sustainable photocatalytic oxidation of organic pollutants but suffers from drawbacks of insufficient oxidation driving force and low quantum efficiency. https://www.selleckchem.com/products/pf-04620110.html To over the drawbacks, here a simple and effective strategy was developed to engineer g-C3N4 with simultaneous interstitially embedded potassium dopant and nitrogen defects, and the process included supramolecular preorganization followed by KOH-assisted thermal polycondensation. In the prepared DN-K-CN catalysts, potassium doping level and the amount of nitrogen defects were both controllable. With the increment of potassium doping level, the bandgap of the DN-K-CN became narrow, along with continuously downshifted valence band position. The DN-K-CN showed greatly enhanced visible-light photocatalytic oxidation performance with respect to g-C3N4 in the degradation of emerging phenolic pollutants, acetaminophen and methylparaben; meanwhile, the oxidation performance of DN-K-CN depended on potassium doping level and the amount of nitrogen defects. Combination of experimental findings and theory calculations it is confirmed that the enhanced photocatalytic oxidation performance of DN-K-CN was attributed to the synergistic effect of potassium dopant and nitrogen defects, which resulted in the generation of plentiful active oxygen species and the improvement of oxidation driving force of valence holes. The influence of potassium dopant and nitrogen defects on the electronic and band structures of g-C3N4 was revealed; simultaneously, mechanism of the enhanced photocatalytic oxidation performance of g-C3N4 after the introduction of potassium dopant and nitrogen defects was studied. The present work provided new insights into the electronic and band structure tuning for the improvement of the photocatalytic oxidation performance of g-C3N4.