https://www.selleckchem.com/products/jnk-in-8.html The combined experimental and theoretical investigation of the magnetic properties of the cobalt(ii) NHC complexes (NHC = N-heterocyclic carbene); [Co(CH2SiMe3)2(IPr)] (1), [CoCl2(IMes)2] (2) and [Co(CH3)2(IMes)2] (3) revealed a large easy plane anisotropy for 1 (D = +73.7 cm-1) and a moderate easy axis anisotropy for 2 (D = -7.7 cm-1) due to significant out-of-state spin-orbit coupling. Dynamic magnetic measurements revealed slow relaxation of the magnetization for 1 (Ueff = 22.5 K, τ0 = 3 × 10-7 s, 1000 Oe) and for 2 (Ueff = 20.2 K, τ0 = 1.73 × 10-8 s, 1500 Oe). The molecular origin of the slow relaxation phenomena was further supported by the retention of AC signal in 10% solutions in 2-MeTHF which reveals a second zero field AC signal in 1 at higher frequencies. Compound 3 was found to be an S = 1/2 system.Correction for 'Supramolecular gels derived from nucleoside based bolaamphiphiles as a light-sensitive soft material' by Julie Baillet et al., Chem. Commun., 2020, 56, 3397-3400, DOI 10.1039/D0CC00336K.A three-dimensional porous 3d-4f heterometallic organic framework, namely, [Eu3(Cu4I4)3(INA)9(DMF)4]·3DMFn (YNU-2), was successfully prepared under solvothermal conditions. There are two different one-dimensional metal chains in the structure, namely, Cu4I4 and EuIII-based chains, resulting in an excellent stability of the prepared sample. A N2 sorption isotherm at 77 K revealed that the activated sample exhibits a Brunauer-Emmett-Teller surface area of 371 m2 g-1, while, YNU-2 can adsorb obviously higher CO2 amounts than CH4 at 273 K and 298 K under 1 atm because of the stronger interaction force between CO2 and the porous skeleton. Furthermore, YNU-2 is highly efficient heterogeneous catalyst for chemical fixation of the CO2 and epoxides into cyclic carbonates with a preferable recyclability. Taking into account its excellent stability, the prepared sample can be used to construct an electrochemical adapter se