https://www.selleckchem.com/products/CAL-101.html We report a multiplexed imaging mass spectrometry method which spatially localizes and selectively accesses the extracellular matrix on formalin-fixed paraffin-embedded tissue sections. The extracellular matrix (ECM) consists of (1) fibrous proteins, post-translationally modified (PTM) via N- and O-linked glycosylation, as well as hydroxylation on prolines and lysines, and (2) glycosaminoglycan-decorated proteoglycans. Accessing all these components poses a unique analytical challenge. Conventional peptide analysis via trypsin inefficiently captures ECM peptides due to their low abundance, intra- and intermolecular cross-linking, and PTMs. In previous studies, we have developed matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) techniques to capture collagen peptides via collagenase type III digestion, both alone and after N-glycan removal via PNGaseF digest. However, in fibrotic tissues, the buildup of ECM components other than collagen-type proteins, including elastin and glycosaminoglycans, limits efficacy of any single enzyme to access the complex ECM. Here, we have developed a novel serial enzyme strategy to define the extracellular matrix, including PTMs, from a single tissue section for MALDI-IMS applications. Graphical Abstract.Quorum sensing (QS) is the ability of some bacteria to detect and to respond to population density through signalling molecules. QS molecules are involved in motility and cell aggregation mechanisms in diseases such as sepsis. Few biomarkers are currently available to diagnose sepsis, especially in high-risk conditions. The aim of this study was the development of new analytical methods based on liquid chromatography-mass spectrometry for the detection and quantification of QS signalling molecules, including N-acyl homoserine lactones (AHL) and hydroxyquinolones (HQ), in biofluids. Biological samples used in the study were Pseudomonas aeruginosa bacterial