Semiconducting single-walled carbon nanotubes (SWCNTs) are an interesting material for strong-light matter coupling due to their stable excitons, narrow emission in the near-infrared region, and high charge carrier mobilities. Furthermore, they have emerged as quantum light sources as a result of the controlled introduction of luminescent quantum defects (sp3 defects) with red-shifted transitions that enable single-photon emission. The complex photophysics of SWCNTs and the overall goal of polariton condensation pose the question of how exciton-polaritons are populated and how the process might be optimized. The contributions of possible relaxation processes, i.e., scattering with acoustic phonons, vibrationally assisted scattering, and radiative pumping, are investigated using angle-resolved reflectivity and time-resolved photoluminescence measurements on microcavities with a wide range of detunings. We show that the predominant population mechanism for SWCNT exciton-polaritons in planar microcavities is radiative pumping. Consequently, the limitation of polariton population due to the low photoluminescence quantum yield of nanotubes can be overcome by luminescent sp3 defects. Without changing the polariton branch structure, radiative pumping through these emissive defects leads to an up to 10-fold increase of the polariton population for detunings with a large photon fraction. Thus, the controlled and tunable functionalization of SWCNTs with sp3 defects presents a viable route toward bright and efficient polariton devices.Ultraviolet light is essential for disinfection, fluorescence excitation, curing, and medical treatment. An ultraviolet light source with the small footprint and excellent optical characteristics of vertical-cavity surface-emitting lasers (VCSELs) may enable new applications in all these areas. Until now, there have only been a few demonstrations of ultraviolet-emitting VCSELs, mainly optically pumped, and all with low Al-content AlGaN cavities and emission near the bandgap of GaN (360 nm). Here, we demonstrate an optically pumped VCSEL emitting in the UVB spectrum (280-320 nm) at room temperature, having an Al0.60Ga0.40N cavity between two dielectric distributed Bragg reflectors. The double dielectric distributed Bragg reflector design was realized by substrate removal using electrochemical etching. Our method is further extendable to even shorter wavelengths, which would establish a technology that enables VCSEL emission from UVA (320-400 nm) to UVC ( less then 280 nm).Photovoltaic systems have reached impressive efficiencies, with records in the range of 20-30% for single-junction cells based on many different materials, yet the fundamental Shockley-Queisser efficiency limit of 34% is still out of reach. Improved photonic design can help approach the efficiency limit by eliminating losses from incomplete absorption or nonradiative recombination. This Perspective reviews nanopatterning methods and metasurfaces for increased light incoupling and light trapping in light absorbers and describes nanophotonics opportunities to reduce carrier recombination and utilize spectral conversion. https://www.selleckchem.com/screening-libraries.html Beyond the state-of-the-art single junction cells, photonic design plays a crucial role in the next generation of photovoltaics, including tandem and self-adaptive solar cells, and to extend the applicability of solar cells in many different ways. We address the exciting research opportunities and challenges in photonic design principles and fabrication that will accelerate the massive upscaling and (invisible) integration of photovoltaics into every available surface.Significance Functional near-infrared spectroscopy (fNIRS) has been widely used to probe human brain function during task state and resting state. However, the existing analysis toolboxes mainly focus on task activation analysis, few software packages can assist resting-state fNIRS studies. Aim We aimed to provide a versatile and easy-to-use toolbox to perform analysis for both resting state and task fNIRS. Approach We developed a MATLAB toolbox called NIRS-KIT that works for both resting-state analysis and task activation detection. Results NIRS-KIT implements common and necessary processing steps for performing fNIRS data analysis, including data preparation, quality control, preprocessing, individual-level analysis, group-level statistics with several popular statistical models, and multiple comparison correction methods, and finally results visualization. For resting-state fNIRS analysis, functional connectivity analysis, graph theory-based network analysis, and amplitude of low-frequency fluctuations analysis are provided. Additionally, NIRS-KIT also supports activation analysis for task fNIRS. Conclusions NIRS-KIT offers an open source tool for researchers to analyze resting-state and/or task fNIRS data in one suite. It contains several key features (1) good compatibility, supporting multiple fNIRS recording systems, data formats of NIRS-SPM and Homer2, and the shared near-infrared spectroscopy format data format recommended by the fNIRS society; (2) flexibility, supporting customized preprocessing scripts; (3) ease-to-use, allowing processing fNIRS signals in batch manner with user-friendly graphical user interfaces; and (4) feature-packed data viewing and result visualization. We anticipate that this NIRS-KIT will facilitate the development of the fNIRS field.This manuscript explores the ethics of human inoculation experiments in young healthy adults with wild-type severe acute respiratory sydrome coronavirus 2 (SARS-CoV-2) as a tool to evaluate vaccine efficacy in the context of the Nuremberg Code, the Declaration of Helsinki, and the Belmont Report, and in the context of dose-response relationships with infectious agents. Despite societal pressure to develop a SARS-CoV-2 challenge model to evaluate vaccines, we argue that there are substantial risks that cannot be adequately defined because the dose of SARS-CoV-2 that causes severe disease in young adults is unknown. In the absence of curative therapy, even if a volunteer consents, longstanding ethical codes governing human subjects research preclude the conduct of such experiments.