Carbon tetrachloride (CCL ) toxicity triggers fibrosis, activating various mechanisms within the cell. We aimed to create damage with CCL and investigate the effectiveness of L-carnitine on the mechanisms we identified. Forty rats were divided into 5 groups with equal number of rats in each group. Group I Control group, Group II L-carnitine group, 200 mg/kg L-carnitine twice a week, Group III CCL group, 0.2 ml/100 gr CCL , IP, dissolved in olive oil 2 times a week during 6 weeks; Group IV L-carnitine + CCL group, 200 mg/kg L-carnitine 24 hr before 0.2 ml/100 g CCL application twice a week; Group V CCL + L-carnitine, 200 mg/kg L-carnitine half an hour after 0.2 ml/100 g CCL application. The liver was evaluated histologically. Immunohistochemically stained with α-SMA, iNOS, HSP90, HIF-1α, and RIP1. TNF-α, TGF-β, AST, ALT, ALP, and GGT measurements were evaluated. In the classical lobule periphery, an increase in lipid accumulation and a decrease in glycogen accumulation were observed. After immunohistochemical measurements and biochemical analyzes, an increase in the expression density of all proteins was observed in group III. In group IV and V, an improvement in tissue and a decrease in protein expression densities were observed. iNOS serves as a free radical scavenger in response to damage caused by increased toxicity of α-SMA, HSP90, and HIF-1α. Especially, increased RIP1 level in the tissue indicates the presence of necrosis in the tissue after CCL -toxicity. Supplementing the amount of endogenous L-carnitine with supplementation provides a significant improvement in the tissue. iNOS serves as a free radical scavenger in response to damage caused by increased toxicity of α-SMA, HSP90, and HIF-1α. Especially, increased RIP1 level in the tissue indicates the presence of necrosis in the tissue after CCL4-toxicity. Supplementing the amount of endogenous L-carnitine with supplementation provides a significant improvement in the tissue. Ischemia/reperfusion (I/R) is the leading cause of acute kidney injury. This study aimed to elucidate the reno-protective effect of gamma-oryzanol (GO) by comparing gavage and intraperitoneal (IP) administration methods on renal I/R injury in a rat model. Rats were divided into four groups including (group 1) sham, (group 2) I/R-control, (group 3) I/R+GO gavage-treated, and (group 4) I/R+ GO IP-treated. A single dose of GO was administrated to groups 3 and 4 (100 mg/kg body weight), 60 min before induction of I/R. After anesthesia, I/R was created by 45 min of ischemia, followed by 6 hr of reperfusion. Then, blood and tissue samples were subjected to evaluation of renal function, anti-oxidant capacity, inflammation, apoptotic proteins, and IKB/NF-kB pathway. The two GO administration methods showed improvement of renal function along with attenuation of histological abnormalities. An increase in antioxidant capacity along with a decrease in pro-inflammatory markers, decline in the expression levels of BAX, Bax/Bcl-2, and caspase-3, and up-regulation of Bcl-2 expression were recorded. Moreover, a significant decrease in NF-Kb, p-IKBα, and MMP-2/9 with an increase in IKBα levels were also observed. Overall, in a comparative evaluation between the two gavage and IP administration methods, we did not find any differences in all examined parameters, except IL-6 which had a better result via gavage. A single dose of GO administration has a reno-protective effect against renal I/R injury. Gavage and IP administration exhibit similar efficiency in alleviation of I/R injury. A single dose of GO administration has a reno-protective effect against renal I/R injury. Gavage and IP administration exhibit similar efficiency in alleviation of I/R injury. Acute renal ischemia may cause acute renal dysfunction due to lack of blood supply; the manifestations are renal tubular cell apoptosis, infiltration of macrophages, and microvascular destruction. Many studies have shown that erythropoietin (EPO) and vitamin D3 (VD3) can be used to prevent or treat renal ischemia-reperfusion (I/R) injury, and VD3 may interact with EPO. In the present study, the effects of the combination of VD3 and EPO in I/R acute kidney injury were studied. Rats were divided into 5 groups sham-operated (SHAM), AKI without treatment (AKI-control), AKI treatment with VD3(AKI+VD3), AKI treatment with EPO(AKI+EPO), AKI treatment with VD3 and EPO(AKI+VD3+EPO). The effects of the combination of VD3 and EPO on AKI were assessed by histologic, inflammation, and apoptosis studies. The degree of damage in renal tissue was significantly reduced in VD3, EPO, and combined groups. Combination therapy with VD3 and EPO markedly improved Creatinine clearance rate (CCr). The combined treatment group showed the lowest F4/80+ and CD68+ expressions. The expression of Bcl-2 in the combined treatment group was higher than those in VD3 group and the EPO group, while Bax's expression goes in the opposite direction. This provides further evidence that VD3 and EPO have beneficial effects in I/R injury via anti-inflammatory and anti-apoptosis pathways. The synergistic protective effect of VD3 and EPO is of profound significance in the development of new strategies for the prevention and treatment of acute kidney injury (AKI). This provides further evidence that VD3 and EPO have beneficial effects in I/R injury via anti-inflammatory and anti-apoptosis pathways. The synergistic protective effect of VD3 and EPO is of profound significance in the development of new strategies for the prevention and treatment of acute kidney injury (AKI). Brain ischemia/reperfusion (I/R) causes irreversible damage, particularly in the hippocampus. Cyanocobalamin (CNCbl) is known to be crucial for the proper operation of the nervous system. Vitamin B12 has been demonstrated to exert antioxidant effects via direct and indirect mechanisms. It can also protect cortical neurons against glutamate cytotoxicity. This research was conducted to examine CNCbl protection against neuronal cell death in the rat hippocampal region following transient cerebral ischemia. In this experiment, 48 male Wistar rats were selected, which were randomly divided into four groups (n=12 in each group) sham, ischemia/reperfusion, ischemia/reperfusion + CNCbl 200 and 400 (µg/kg). By occlusion of both common carotids, ischemia induction was performed within 20 min. CNCbl at the doses of 200 and 400 µg/kg was injected (IP) at the start of the reperfusion, 24 and 48 hr following reperfusion. The spatial memory was assessed 7 days following ischemia through the Morris water maze test. https://www.selleckchem.com/products/FK-506-(Tacrolimus).html Antioxidant enzymes, apoptosis, and necrosis were measured after behavioral tests.