Therefore, the objectives of this report were to provide a detailed description of the rhinoscopic appearance of a canine nasal TVT, in addition to clinical features, diagnostic findings, CT imaging, and successful therapeutic management.Functional mitral regurgitation is a clinical entity with increasing prevalence and significant impact on morbidity and mortality. Because of the unsatisfactory results of medical therapy and high perioperative risk resulting in low referral/high denial rates for surgical treatment, benefits of which still remain controversial, novel minimally invasive transcatheter techniques are under development. Herein, in the present review, we discuss the recent progress in the emerging field of catheter-based techniques for functional mitral regurgitation.Iron-dependent dioxygenases of the AlkB protein family found in most organisms throughout the tree of life play a major role in oxidative dealkylation processes. Many of these enzymes have attracted the attention of researchers across different fields and have been subjected to thorough biochemical characterization because of their link to human health and disease. For example, several mammalian AlkB homologues are involved in the direct reversal of alkylation damage in DNA, while others have been shown to play a regulatory role in epigenetic or epitranscriptomic nucleic acid methylation or in post-translational modifications such as acetylation of actin filaments. These studies show that that divergence in amino acid sequence and structure leads to different characteristics and substrate specificities. In this review, we aim to summarize current insights in the structural features involved in the substrate selection of AlkB homologues, with focus on nucleic acid interactions.In this study, dissolving microneedles (DMNs) with dual-release pattern, capable of both bolus release and slow release, were prepared. These DMNs were used with a hepatitis B vaccine that requires multiple shots to achieve immunological efficacy comparable to that obtained when two separate shots are administered. Dissolving microneedles with HBsAg in PLA tips and CMC coating formulation together (HBsAg-PLA/CMC-DMNs) consist of polylactic acid (PLA) tips for slow release, a carboxy-methyl cellulose (CMC) coating formulation for bolus release, and a dissolving base of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) for dissolution in the skin. The in vitro release pattern of HBsAg from the CMC coating formulation and PLA tips was observed. Through an in vivo test, 1) the delivery efficiency of HBsAg-PLA/CMC-DMNs was observed, and 2) the immunological efficacy of this method was compared with the efficacy of two shots delivered by conventional intramuscular (IM) administration and two shots delivered by HBsAg-coated microneedle (CMNs) administration. HBsAg-PLA/CMC-DMNs punctured the skin successfully. The PVA/PVP base was completely dissolved within 10 min of insertion, resulting in the delivery of all microneedle tips into the skin. In the in vitro release experiment, all of the HBsAg in the CMC coating formulation was released within 20 min, and the HBsAg present in the PLA tips was gradually released over more than 55 days. The antibody titer of one shot of HBsAg-PLA/CMC-DMNs was the same as or higher than two shots delivered by conventional IM and CMN methods. DMNs with dual-release pattern can deliver two formulations simultaneously with a single shot, resulting in improved immunological efficacy of HBsAg that requires multiple doses. In addition, this dual-release MN system can be used for the delivery of other drugs that require multiple administrations.The application of baicalein (BE) in central nervous system (CNS) neurodegenerative diseases is hampered by its poor solubility and low oral bioavailability despite its neuroprotective effects. In this study, BE was encapsulated into poly (ethylene glycol)-block-poly (D, L-lactide) micelles (BE-MC) and administrated through nasal inhalation to enhance its brain distribution. BE-MC showed comparable in-vitro antioxidant activity to BE solution. Cytotoxicity study illustrated BE-MC could reduce BE's toxicity in SH-SY5Y cells and BV-2 cells. https://www.selleckchem.com/products/bismuth-subnitrate.html BE solution at concentration higher than 5 µM caused significant BV-2 cells' death after stimulation of LPS while BE-MC were non-toxic to cells at concentrations up to 50 µM. BE solution at 5 µM had no anti-inflammatory effects in BV-2 cells while BE-MC could reduce the inflammatory factor TNF-α at 5 µM and IL-6 at 20 µM significantly. Pharmacokinetic studies in C57BL/6 mice showed the absolute AUC values of BE in plasma and brain of BE-MC through nasal inhalation group were 5.09-fold and 1.50-fold higher than that of BE coarse powder through oral administration group at the same dose. Thus, our study indicated BE-MC administered nasally could be useful for treatment of CNS neurodegenerative diseases due to oxidative stress and inflammation.Ovarian cancer is the most common cause of death among gynecological malignancies globally. Ovarian cancer treatment integrates debulking surgery and systemic therapy. Genomic and proteomic analyses have shown that ovarian cancer is heterogeneous with unique molecular characteristics that may facilitate the development of systemic targeted chemotherapeutic and immunotherapeutic precision medicines. However, despite their advantages, these therapies have some limitations. Chemotherapy has drawbacks such as drug resistance and high toxicity due to nonspecific tumor targeting; the targeted versions have limited utility and off-target side effects. Immunotherapy has a low response rate due to the intrinsically immunosuppressive tumor microenvironment in ovarian cancer. Nanotechnology-based drug delivery systems have the potential to overcome such limitations. Various nanoparticles have been developed for controlled drug delivery to ovarian cancer. In this review, we summarize the application of nanotechnology in ovarian cancer systemic therapy including nanoformulations in the market and in clinical trials, as well as the recent nanoparticle research therapeutic strategies. The potential and challenges of nanoparticles in ovarian cancer treatment are also discussed.