https://www.selleckchem.com/products/sb297006.html A stereoselective annulation protocol was developed to construct dihydrofuranoindoles from readily available starting materials. In the presence of a bifunctional squaramide, the Friedel-Crafts alkylation/annulation cascade process occurred smoothly to provide dihydrofuranoindoles in 26-95% isolated yields exclusively as trans-diastereomers (38-99% ee). This catalytic protocol was compatible with a range of structurally distinct hydroxyindoles bearing the hydroxyl group at different positions, providing four kinds of dihydrofuranoindoles. Moreover, gram-scale synthesis and further synthetic manipulation of the product were also demonstrated.The production of zinc-containing nanostructures has a large variety of applications. Using electron beam techniques to degrade organometallic molecules for that purpose is perhaps one of the most versatile methods. In this work, we investigate the scattering of low-energy (3 eV. The mechanisms for electron capture and then molecular dissociation are discussed in terms of density functional theory studies.The fungal metabolite illudinine is prepared in seven steps and ca. 55% overall yield from dimedone using an "open and shut" (ring-opening and ring-closing) strategy. Tandem ring-opening fragmentation and olefination of dimedone establishes alkyne and vinylarene functionality linked by a neopentylene tether. Oxidative cycloisomerization then provides the illudinine framework. The key innovation in this second-generation synthesis of illudinine is the use of the nitrile functional group, rather than an ester, as the functional precursor to the carboxylic acid of illudinine. The small, linear nitrile (C≡N) is associated with improved selectivity, π-conjugation, and reactivity at multiple points in the synthetic sequence relative to the carboxylic acid ester. Preliminary assays indicate that illudinine and several related synthetic analogues are monoamine oxidase inhibitors, which