Therefore, for "Belt and Road" participating countries that differ greatly from China in terms of their institutional environment, cooperation with China should be strengthened to reduce the impact of bilateral institutional differences.In this paper, the amount of 19 elements in three species of algae and associated sediment in the northern margin of the Persian Gulf was investigated. A sampling of algae was performed on the coast with a length of 5 km in each station and surface sediment was sampled at the same time in low and middle intertidal zones. The values of elements in the samples were measured by using an inductively coupled plasma mass spectrometry (ICP-MS) device. Then, the amount of bioaccumulation factor in algae tissue relative to sediment (biota-sediment accumulation factor, BSAF) was determined. The value of BSAF was compared with the empirical cumulative entropy (ECE). ECE is based on comparing the element information in algae with those in sediments. The results showed that BSAF was very closely related to the ECE factor so that significant correlations were obtained for algae species of P. gymnospora (ECE = 0.477 BSAF, R2 0.967), H. hamulosa (ECE = 0.542 BSAF, R2 0.979), and C. membranacea (ECE = 0.356 BSAF, R2 0.976). The ECE values > 0.4 were similar to those obtained for BSAF > 1, exhibiting that the element accumulation in algae was higher than in sediments. https://www.selleckchem.com/products/liraglutide.html Based on ECE, to determine the vanadium accumulation in the environment, the C. membranacea algae are more appropriate than H. hamulosa. Overall, the data showed that ECE is a good alternative to BSAF in estimating marine pollution.The present work deals with the seasonal variations in the contribution of sources to PM2.5 and PM10 in Delhi, India. Samples of PM2.5 and PM10 were collected from January 2013 to December 2016 at an urban site of Delhi, India, and analyzed to evaluate their chemical components [organic carbon (OC), elemental carbon (EC), water-soluble inorganic components (WSICs), and major and trace elements]. The average concentrations of PM2.5 and PM10 were 131 ± 79 μg m-3 and 238 ± 106 μg m-3, respectively during the entire sampling period. The analyzed and seasonally segregated data sets of both PM2.5 and PM10 were used as input in the three different receptor models, i.e., principal component analysis-absolute principal component score (PCA-APCS), UNMIX, and positive matrix factorization (PMF), to achieve conjointly corroborated results. The present study deals with the implementation and comparison of results of three different multivariate receptor models (PCA-APCS, UNMIX, and PMF) on the same data sets that allowed a better understanding of the probable sources of PM2.5 and PM10 as well as the comportment of these sources with respect to different seasons. PCA-APCS, UNMIX, and PMF extracted similar sources but in different contributions to PM2.5 and PM10. All the three models extracted 7 similar sources while mutually confirmed the 4 major sources over Delhi, i.e., secondary aerosols, vehicular emissions, biomass burning, and soil dust, although the contribution of these sources varies seasonally. PCA-APCS and UNMIX analysis identified a less number of sources (besides mixed type) as compared to the PMF, which may cause erroneous interpretation of seasonal implications on source contribution to the PM mass concentration.The sorption characteristics of raw and biofilm-coated materials vermiculite, lightweight expanded clay aggregate (LECA), perlite, zeolite, and shungite toward Cd and Cr(VI) ions were investigated to evaluate the possibility of their use as filtration barrier in the aquifer near a solid domestic waste landfill. The effectiveness of Cr(VI) removal by the raw materials changed in the following order shungite > zeolite > perlite > vermiculite > LECA and for Cd zeolite > shungite > vermiculite > perlite > LECA. After biofilm formation on the surface of the materials, the sorption capacity increased in some (perlite, LECA), while in others (zeolite) it was reduced. Four kinetic models were used to describe the experimental data. Mechanisms of metal removal were proposed for Cr(VI), a characteristic combination of sorption processes was suggested, while the removal of Cd ions could occur by ion exchange and by complexation on the surface of the sorbent. Cr(VI) reduction by living bacterial cells forming a biofilm on the sorbent surface was assessed.The transportation sector has a dominant contribution to the fast-growing economy of the developing country Bangladesh. However, the nature of operating the transportation sector in the country requires an excessive amount of fossil energy which causes the rise of CO2 emissions. Ascertaining the impending factors and technologically to conserve energy, as well as governing CO2 emissions from this sector, are essential to attain sustainable development. The paper endeavors to determine the decomposition of driving factors that affect the relationship between Bangladesh's transport sector development and CO2 emissions due to energy consumption from the year 1990 to 2017 using the Logarithmic-Mean Divisia Index (LMDI) model. The decomposition factors are fragmented into five elements through consideration of five fossil energies which are used in Bangladesh's transportation sector. The result reveals a 106.94% growth of aggregate CO2 emissions in the transportation sector of Bangladesh. The results also show that aggregate influence of economic activity factor, population factor, economic structure factor, and energy intensity factor liable in increase CO2 emissions to 66.03%, 23.56%, 7.64%, and 6.25% respectively. On the contrary, the energy structure factor is accountable for the decrease in CO2 emissions to - 0.80%. Thus, the Bangladesh Government should proliferate mass responsiveness programs and cope with economic development through emphasizing quality of development rather than quantity which will ensure sustainable transport sector development.Analysis of skeletal muscle mass and composition is essential for studying the biology of age-related sarcopenia, loss of muscle mass, and function. Muscle immunohistochemistry (IHC) allows for simultaneous visualization of morphological characteristics and determination of fiber type composition. The information gleaned from myosin heavy chain (MHC) isoform, and morphological measurements offer a more complete assessment of muscle health and properties than classical techniques such as SDS-PAGE and ATPase immunostaining; however, IHC quantification is a time-consuming and tedious method. We developed a semiautomatic method to account for issues frequently encountered in aging tissue. We analyzed needle-biopsied vastus lateralis (VL) of the quadriceps from a cohort of 14 volunteers aged 74.9 ± 2.2 years. We found a high correlation between manual quantification and semiautomatic analyses for the total number of fibers detected (r2 = 0.989) and total fiber cross-sectional area (r2 = 0.836). The analysis of the VL fiber subtype composition and the cross-sectional area also did not show statistically significant differences.