Second, the absorption coefficient is calculated using a semiclassical approach, taking into account the number of atoms per unit volume, the classical electron radius, the laser wavelength, and the atomic scattering factor (10 in case of Au), which cover all the basic aspects for the interaction between the attosecond laser and a nanoparticle. The model is applicable within the 100-2000 nm range. The main conclusion of the model is that for a range inferior to 1000 nm, a competition between ballistic and thermal phenomena occurs. For values in excess of 1000 nm, our study suggests that the thermal phenomena are dominant. Contrastingly, during the irradiation with fs pulses, this value is of the order of 100 nm. This theoretical model's predictions could be soon confirmed with the new EU-ELI facilities in progress, which will generate pulses of 100 as at a 30 nm wavelength.In the European Union, health surveillance (HS) of electromagnetic fields (EMF)-exposed workers is mandatory according to the Directive 2013/35/EU, aimed at the prevention of known direct biophysical effects and indirect EMF's effects. Long-term effects are not addressed in the Directive as the evidence of a causal relationship is considered inadequate. Objectives of HS are the prevention or early detection of EMF adverse effects, but scant evidence is hitherto available on the specific procedures. A first issue is that no specific laboratory tests or medical investigations have been demonstrated as useful for exposure monitoring and/or prevention of the effects. Another problem is the existence of workers at particular risk (WPR), i.e., subjects with specific conditions inducing an increased susceptibility to the EMF-related risk (e.g., workers with active medical devices or other conditions); exposures within the occupational exposure limit values (ELVs) are usually adequately protective against EMF's effects, but lower exposures can possibly induce a health risk in WPR. Consequently, the HS of EMF-exposed workers according to the EU Directive should be aimed at the early detection and monitoring of the recognized adverse effects, as well as an early identification of WPR for the adoption of adequate preventive measures.The main factor of embryonic demise is endoplasmic reticulum (ER) stress. Successful attenuation of ER stress results in an improvement in embryo development. We studied the impact of adiponectin in the in vitro culture (IVC) of porcine embryos derived from parthenogenetic activation and somatic cell nuclear transfer (SCNT). The first experiment revealed that 15 and 30 μg/mL adiponectin treatments improved cleavage, blastocyst rates, and total cell number (TCN) of parthenogenetic embryos and reduced the expression of XBP1 compared to the 5 μg/mL adiponectin treatment and control groups (p less then 0.05). https://www.selleckchem.com/products/Temsirolimus.html The second experiment showed that cleavage rate, blastocyst formation rate, and TCN of blastocysts were improved in the 15 μg/mL adiponectin treatment group compared with the control group, with significantly reduced XBP1 expression in ≥4-cell stage SCNT embryos and blastocysts (p less then 0.05). Treatment with 15 μg/mL adiponectin significantly improved the expression of XBP1 and reduced the expression of ER stress-related genes (uXBP1, sXBP1, PTPN1, and ATF4), increased the expression levels of pluripotency-related genes (Nanog and SOX2), and decreased apoptosis-related gene expression (Caspase-3). These results suggest that 15 μg/mL adiponectin enhanced the in vitro developmental capacity of early-stage SCNT porcine embryos by reducing ER stress and apoptosis.Denosumab is a human monoclonal antibody that neutralizes RANKL, a cytokine able to interact with the RANK receptor on preosteoclasts and osteoclasts, decreasing their recruitment and differentiation, leading to a decreased bone resorption. The aim of this observational real-life study was to analyze adherence to denosumab therapy and assess its efficacy in increasing bone mineral density (BMD) and modulating biochemical skeletal markers following previous treatments with bisphosphonates in a group of post-menopausal women with osteoporosis. Women were recruited in the specialized center from March 2012 to September 2019. Biochemical markers were recorded at baseline and every six months prior to subsequent drug injection. Dual X-ray absorptiometry was requested at baseline and after 18/24 months. Comparing BMD at baseline and after denosumab therapy in naive patients and in those previously treated with bisphosphonates, a positive therapeutic effect was observed in both groups. The results of our real-life study demonstrate, as expected, that BMD values significantly increased upon denosumab treatment. Interestingly, denosumab showed an increased efficacy in patients previously treated with bisphosphonates. Moreover, biochemical markers data indicate that osteoporotic patients, without other concomitant unstable health conditions, could be evaluated once a year, decreasing the number of specialistic center access.Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.Interleukin (IL)-6 family cytokines act through a receptor complex with gp130 subunits. IL-6 is a pleiotropic cytokine that regulates inflammation and liver regeneration. Mitochondria are the first to respond to stress and adapt their dynamics in conditions of damage. In this regard, the study aimed to investigate the role of the IL-6 cytokine family (sIL-6Ra, gp130/sIL-6Rb, and IL-11) in the regulation of mitochondrial dynamics in the liver in obese patients and to assess the contribution of these cytokines to the pathogenesis of type 2 diabetes mellitus (T2DM). We studied 134 obese patients with and without T2DM and 41 healthy donors. We found that increasing the concentration of sIL-6Ra and gp130/sIL-6Rb protected against carbohydrate disorders in obese patients and prevented non-alcoholic fatty liver disease (NAFLD) progression in obese patients. An increase in plasma IL-6 levels is associated with decreased, mitochondrial transcription factor A (TFAM) protein production in liver biopsies in obese patients with and without T2DM.