https://www.selleckchem.com/GSK-3.html The results of uniaxial tensile tests suggest that the angle penalty function in the Tersoff model needs to be modified and that the stress-strain curve predicted with this modification shows improvement compared to the original function.Tea tree oil, a natural antibacterial compound, cannot be used effectively because of its volatile nature. In this work, a biocompatible carrier was prepared and loaded with tea tree essential oil. The carrier was prepared via the electrostatic or chemical action of aminated mesoporous silica and sodium rosin for achieving a low volatilization rate of tea tree essential oil. A synergistic antibacterial effect was observed between sodium rosin and tea tree essential oil. This method utilized the positive charge of the amino group and the condensation reaction with the carboxyl group to achieve physical and chemical interactions with sodium rosin. Fourier Transform Infrared, Brunauer-Emmet-Teller, Zeta potential, SEM, TEM, and TG were performed to characterize the structure and properties of the samples. Compared to the electrostatic effect, the chemically modified system exhibited a longer sustained release, and the sustained release curve followed the Korsmeyer-Peppas release model. Also, the antibacterial properties of the chemically modified system exhibited better minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) respectively, the MIC and MBC forE. coliwere 0.3 mg ml-1and 0.6 mg ml-1respectively, forS. aureuswere 0.15 mg ml-1and 0.3 mg ml-1respectively. More strikingly, the sample also demonstrated long-term antibacterial performance. Therefore, this work provides a new way for the delivery of volatile antibacterial drugs to achieve sustained-release and long-lasting antibacterial effects.Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), th