CUR upregulated the expression of Bcl-2, and downstream the expression of Bax and Caspase-3 proteins by immunohistochemical determination and western blotting. Therefore, these results suggest that CUR has a certain protective effect on diabetic cardiomyopathy by inhibiting the production of ROS.Ultraviolet (UV) radiation is a major factor that causes wrinkle formation by affecting the collagen level in the skin. Here, we show that a short peptide (A8) derived from the repair domain of the ribosomal protein S3 (rpS3) reduces UV irradiation-induced increase in matrix metalloproteinase-1 (MMP-1) and prevents collagen degradation by reducing the activation of the mitogen-activated protein kinase (MAPK) signaling proteins (extracellular signal-regulated kinase [ERK], p38, and c-Jun N-terminal kinases [JNK]) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in cells. Furthermore, A8 also prevents the increase in the levels of inflammatory modulators such as tumor necrosis factor-alpha (TNF-α) or interleukin-6 (IL-6) in UV-irradiated cells. Collectively, our study suggests that the A8 peptide, derived from yeast or human, has anti-photoaging potential as it prevents UV-induced wrinkle formation.Eukaryotic translation initiation factor 4E (eIF4E) is deregulated in patients with renal cell carcinoma (RCC) and associated with poor prognosis, and is activated and regulated by Mnk kinases. In this study, we investigated the anti-RCC potential of a unique Mnk inhibitor cercosporamide. We showed that cercosporamide is active against RCC cells via suppressing growth, survival and migration. Combination indices value indicated that the combination of cercosporamide with sunitinib or temsirolimus are synergistic in RCC. In two independent RCC xenograft mouse models, complete tumor growth arrest or reverse was observed throughout the duration of drug treatment in the combination of cercosporamide with sunitinib or temsirolimus groups. Of note, cercosporamide inhibited RCC angiogenesis via negatively regulating a number of RCC endothelial cellular events including morphogenesis, migration, growth and survival. Mechanistically, we found that cercosporamide suppressed pro-angiogenic factors VEGF and HIFα, inhibited EMT and reduced pro-survival and cell cycle proteins; and furthermore this was attributed to cercosporamide's ability in inhibiting eIF4E. This work demonstrates the anti-RCC activity of cercosporamide through targeting both RCC tumor cells and angiogenesis, and provides the first preclinical proof-of-concept of evidence of Mnk inhibition for RCC treatment.Triple-negative breast cancer (TNBC) remains the most challenging breast cancer subtype to treat. CoA synthase (CoAsy) is a bifunctional enzyme, encoded by the COASY gene, which catalyzes the last two steps of CoA biosynthesis. COASY has been reported as a hit in several large RNAi library screens for cancer. https://www.selleckchem.com/products/piperacillin.html Therefore, we sought to investigate the dependency of TNBC cell line proliferation on CoAsy expression. Initially, knockdown of CoAsy expression was achieved by RNAi and reduced proliferation was observed in two TNBC cell lines, HCC1806 and MDA-MB-231. To further investigate the role of CoAsy, we established stable inducible shRNA cell lines from the same TNBC cell lines as well as the normal-like breast cell line MCF10A. Three separate cell lines, each expressing one of three different shRNA constructs targeting COASY, and a non-targeted shRNA control cell line were generated from each parent cell line. The induction of COASY shRNA for 4 days resulted in >99% knockdown of CoAsy for all three COASY shRNA constructs. However, this robust knockdown of CoAsy protein expression had no detectable impact on cell growth with 4-day induction times. Even 8-day induction times resulted in no apparent impact on cell growth. There was also no effect of CoAsy knockdown on the rate of cell migration. Measurement of CoA levels in cell lysates indicated that CoAsy knockdown reduced CoA to approximately half the normal level. Thus, CoAsy knockdown showed no detectable effect on the in vitro proliferation and migration of these cell lines possibly due to the cell's ability to maintain adequate levels of CoA through some unknown mechanism.Neurons in the central nervous system display a great diversity of synaptic architecture. While much of our knowledge on the excitatory synapse morphology derives from the prototypical asymmetric synapses, little has been studied about the atypical crest-type synapse that exists in the restricted brain regions. Here, we used focused ion beam scanning electron microscopy (FIB/SEM) to image a neuropil volume of interpeduncular nucleus (IPN) and manually reconstructed several dendrites to obtain an insight about the topography and quantitative features of crest synapses. Three-dimensional reconstruction showed numerous U-shaped structures protruding from the IPN dendrites. On either faces of the U-shaped structure, a pair of crest synapses are aligned in parallel such that there exists a positive correlation between the postsynaptic density (PSD) area of synapses that participate in pair formation. Interestingly, mitochondria are excluded from the site of crest synapses. Several presynaptic axons run through the hollow, cylindrical space of the U-shape grooves such that the plasma membrane of the axon and the dendrite are organized in a tight opposition without any intervening glial membrane. Unlike the peculiar dendritic morphology, IPN neurons possess typical somatic morphology with an oval, centrally located nucleus. In conclusion, our data reveals a hitherto unknown unique topographical feature of crest synapses in the IPN.TGF-β1 is known to induce epithelial-mesenchymal transition (EMT), which is a prerequisite for cancer cell invasion. Here we reveal that TOPK upregulates EMT and invasion of human breast cancer MDA-MB-231 or Hs578T cells via NF-κB-dependent Snail/Slug in TGF-β1 signaling. Endogenous TOPK expression was significantly increased in response to TGF-β1 and TOPK knockdown mitigated TGF-β1-induced breast cancer cell invasion. Interestingly, TOPK knockdown restored TGF-β1 suppression of E-cadherin expression and markedly reduced N-cadherin induced by TGF-β1. Also, NF-κB activity or expression of EMT markers Snail and Slug induced by TGF-β1 was decreased by TOPK knockdown. Meanwhile, knockdown of Snail or TOPK attenuated TGF-β1-induced breast cancer cell invasion. Taken, we conclude that TOPK mediates TGF-β1-induced EMT and invasion in breast cancer cells via NF-κB/Snail signaling, suggesting novel role of TOPK as therapeutic target in TGF-β1-mediated breast cancer development.