https://www.selleckchem.com/products/sn-011-gun35901.html Nitroxides are broadly used as molecular probes and labels in biophysics, structural biology, and biomedical research. Resistance of a nitroxide group bearing an unpaired electron to chemical reduction with low-molecular-weight antioxidants and enzymatic systems is of critical importance for these applications. The redox properties of nitroxides are known to depend on the ring size (for cyclic nitroxides) and electronic and steric effects of the substituents. Here, two highly strained nitroxides, 5-(tert-butyl)-5-butyl-2,2-diethyl-3-hydroxypyrrolidin-1-oxyl (4) and 2-(tert-butyl)-2-butyl-5,5-diethyl-3,4-bis(hydroxymethyl)pyrrolidin-1-oxyl (5), were prepared via a reaction of the corresponding 2-tert-butyl-1-pyrroline 1-oxides with butyllithium. Thermal stability and kinetics of reduction of the new nitroxides by ascorbic acid were studied. Nitroxide 5 showed the highest resistance to reduction.Coating technology can be applied to decorate building constructions. Alkali-activated materials (AAM) are promising green and durable inorganic binders which show potential for development as innovative coating. In the paper, the possibility of using AAM composited with starch (CMS) as a novel plastic formable inorganic coating for decorating in building was investigated. The rheological properties, including plastic viscosity, yield stress, and thixotropy were considered to be critical properties to obtain the working requirements. Four different mixtures were systematically investigated to obtain the optimum formulation, and then were used to study their hardened properties, such as mechanical strengths (compressive, flexural, and adhesive strength), drying shrinkage, cracking behavior, and microstructure. Study results found that CMS could quickly and efficiently be hydrolyzed in an alkaline solution to produce organic plastic gel which filled in AAM paste, leading to the significant improvement of coating consisten