https://www.selleckchem.com/products/epacadostat-incb024360.html The purpose of this study was to determine the dynamic changes of the Nogo-66 receptor 1 (NgR1) pathway during epileptogenesis and the potential beneficial of leucine-rich repeat and Ig-like domain-containing Nogo receptor interacting protein 1 (Lingo-1) inhibition on epilepsy rats. The hippocampal changes of the NgR1 pathway during epileptogenesis were determined by western blot analysis of multiple proteins, including neurite outgrowth inhibitor protein A (NogoA), myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), Lingo-1, ras homolog family member A (RhoA) and phosphorylated RhoA (p-RhoA). Lentivirus-mediated short hairpin RNA (shRNA) was used to knockdown the hippocampal expression of Lingo-1. Novel object recognition (NOR) test and Morris Water Maze (MWM) test were employed to determine the cognitive functions of rats. Hematoxylin and eosin (H&E) staining, protein expressions of RhoA, p-RhoA, and myelin basic protein (MBP), as well as convulsion susceptibility test were additionally performed. Our results showed that the NgR1 pathway was activated during epileptogenesis, characterized by up-regulation of NogoA, MAG, OMgp, and Lingo-1, which was especially significant at the chronic phase of epilepsy. The cognitive function, convulsion susceptibility and hippocampal neuronal survival of rats were impaired at the chronic phase of epileptogenesis but all improved by Lingo-1 inhibition; besides, the hippocampal protein expressions of p-RhoA and MBP were significantly decreased at the chronic phase of SC rats but increased after Lingo-1 inhibition. Our results demonstrated that Lingo-1 shRNA can improve epilepsy-induced cognitive impairment, which may be related with the pro-myelination and neuroprotection effects of Lingo-1 inhibition.Metal oxide nanoparticles are known to exhibit unique properties such as catalyzing the neutralization of superoxide anions, hydroxyl radi