https://www.selleckchem.com/products/U0126.html Piceatannol (PIC) is a naturally occurring polyphenolic stilbene, and it has pleiotropic pharmacological properties. Moreover, PIC has cytotoxic actions among various cancer cells. In this work, preparations of PIC-loaded bilosome-zein (PIC-BZ) were designed, formulated, and characterized, and the optimized PIC-BZ cytotoxic activities, measured as half maximal inhibitory concentration (IC50), against lung cancer cell line was investigated. Box-Behnken design was utilized in order to examine the effect of preparation factors on drug entrapment and particle size. PIC-BZ showed a spherical shape after optimization, and its particle size was determined as 157.45 ± 1.62 nm. Moreover, the efficiency of drug entrapment was found as 93.14 ± 2.15%. The cytotoxic activity evaluation revealed that the adjusted formulation, which is PIC-BZ formula, showed a substantially smaller IC50 versus A549 cells. Cell cycle analysis showed accumulation of cells in the G2-M phase. Moreover, it showed in the sub-G1 phase, a rise of cell fraction suggestion apoptotic improving activity. Increased early and late phases of apoptosis were demonstrated by staining of cells with annexin V. Furthermore, the cellular caspase-3 protein expression was significantly raised by PIC-BZ. In addition, the wound healing experiment confirmed the results. To conclude, compared to pure PIC, PIC-BZ demonstrated a higher cell death-inducing activity against A549 cells.Glycerol aqueous phase reforming (APR) produces hydrogen and interesting compounds at relatively mild temperatures. Among APR catalysts investigated in literature, little attention has been given to Pt supported on TiO2. Therefore, herein we propose an innovative titania support which can be obtained through an optimized microemulsion technique. This procedure provided high surface area titania nanospheres, with a peculiar high density of weak acidic sites. The material was tested in the catalytic gly