https://www.selleckchem.com/ The pedestrian is one of the most vulnerable road users and comprises approximately 23% of the road crash-related fatalities in the world. To protect pedestrians during Car-to-Pedestrian Collisions (CPC), subsystem impact tests are used in regulations. These tests provide insight but cannot characterize the complex vehicle-pedestrian interaction. The main purpose of this study was to develop and validate a detailed pedestrian Finite Element (FE) model corresponding to a 50th percentile male to predict CPC induced injuries. The model geometry was reconstructed using a multi-modality protocol from medical images and exterior scan data corresponding to a mid-sized male volunteer. To investigate injury response, this model included internal organs, muscles and vessels. The lower extremity, shoulder and upper body of the model were validated against Post Mortem Human Surrogate (PMHS) test data in valgus bending, and lateral/anterior-lateral blunt impacts, respectively. The whole-body pedestrian model was validated in CPC simulations using a mid-sized sedan and simplified generic vehicles bucks and previously unpublished PMHS coronal knee angle data. In the component validations, the responses of the FE model were mostly within PMHS test corridors and in whole body validations the kinematic and injury responses predicted by the model showed similar trends to PMHS test data. Overall, the detailed model showed higher biofidelity, especially in the upper body regions, compared to a previously reported simplified pedestrian model, which recommends using it in future pedestrian automotive safety research. In human cochlear implant (CI) recipients, the slope of the electrically evoked compound action potential (ECAP) amplitude growth function (AGF) is not very well investigated, in comparison to the threshold derived from the AGF. This is despite the fact that it was shown in animal experiments that the slope correlates with the number of excitable