https://www.selleckchem.com/products/otx015.html Upon their activation, CD8+ T cells in the tumor micro-environment (TME) secrete cytokines such as IFNγ, TNFα, and IL-2. While over the past years a major interest has developed in the antigenic signals that induce such cytokine release, our understanding of the cells that subsequently sense these CD8+ T-cell secreted cytokines is modest. Here, we review the current insights into the spreading behavior of CD8+ T-cell-secreted cytokines in the TME. We argue for a model in which variation in the mode of cytokine secretion, cytokine half-life, receptor-mediated clearance, cytokine binding to extracellular components, and feedback or forward loops, between different cytokines or between individual tumors, sculpts the local tissue response to natural and therapy-induced T-cell activation in human cancer.The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused more than 2,000,000 deaths worldwide. Currently, vaccine development and drug repurposing have been the main strategies to find a COVID-19 treatment. However, the development of new drugs could be the solution if the main strategies fail. Here, a virtual screening of pentapeptides was applied in order to identify peptides with high affinity to SARS-CoV-2 main protease (Mpro). Over 70,000 peptides were screened employing a genetic algorithm that uses a docking score as the fitness function. The algorithm was coupled with a RESTful API to persist data and avoid redundancy. The docking exhaustiveness was adapted to the number of peptides in each virtual screening step, where the higher the number of peptides, the lower the docking exhaustiveness. Two potential peptides were selected (HHYWH and HYWWT), which have higher affinity to Mpro than to human proteases. Albeit preliminary, the data presented here provide some basis for the rational design of peptide-based drugs to treat COVID-19. Older adults with bipolar disorder (BD) common