A combination of rheology, optical microscopy and computer simulations was used to investigate the microstructural changes of a semi-dilute suspension of attractive rigid rods in an imposed shear flow. The aim is to understand the relation of the microstructure with the viscoelastic response, and the yielding and flow behaviour in different shear regimes of gels built from rodlike colloids. A semi-dilute suspension of micron sized, rodlike silica particles suspended in 11 M CsCl salt solution was used as a model system for attractive rods' gel. Upon application of steady shear the gel microstructure rearranges in different states and exhibits flow instabilities depending on shear rate, attraction strength, volume fraction and geometrical confinement. At low rod volume fractions, the suspension forms large, vorticity aligned, particle rich flocs that roll in the flow-vorticity plane, an effect that is due to an interplay between hydrodynamic interactions and geometrical confinement as suggested by computer simulations. Experimental data allow the creation of a state diagram, as a function of volume fraction and shear rates, identifying regimes of stable (or unstable) floc formation and of homogeneous gel or broken clusters. The transition is related to dimensionless Mason number, defined as the ratio of shear forces to interparticle attractive force.The indol(in)e building block is one of the "privileged-structures" for the pharmaceutical industry since this fragment plays a central role in drug discovery. While the electron-rich character of the indole motif has been investigated for decades, exploiting the electrophilic reactivity of 3-nitroindole derivatives has recently been put at the heart of a wide range of new, albeit challenging, chemical reactions. In particular, dearomatization processes have considerably enriched the scope of C2[double bond, length as m-dash]C3 functionalizations of these scaffolds. This feature article showcases this remarkable electrophilic reactivity of 3-nitroindoles with electron-rich species and highlights their value in generating diversely substituted indol(in)es. This compilation underlines how these heteroaromatic templates have gradually become model substrates for electron-poor aromatic compounds in dearomatization strategies.A highly selective, mild, and efficient method for the cleavage of oxophenylacetyl ester protected saccharides was developed using triethylamine in methanol at room temperature. The reagent proved successful against different labile groups like acetal, ketal, and PMB and also generated good yields of the desired saccharides bearing lipid esters. Further, we also observed DBU in methanol as an alternative reagent for the deprotection of acetyl, benzoyl, and oxophenylacetyl ester groups.Electrohydrodynamic jet (E-Jet) printing is a promising manufacturing technique for micro-/nano-patterned structures with high resolution, high efficiency and high material compatibility. However, further improvement of the necking ratio of the E-Jet is still limited by the focusing principle. Moreover, ink viscosity is limited to values well below 90 mPa s owing to the high probability of nozzle blockage. Here, we propose a microtip focused electrohydrodynamic jet (MFEJ) printing to overcome these limitations. This technique uses a solid microtip with a radius of curvature (ROC) of several micrometers rather than a hollow nozzle, which is very simple and highly efficient to prepare and can effectively avoid nozzle clogging problems even with high-viscosity printing ink. High-resolution patterns in diverse geometries were printed using different inks with a wide range of viscosities (8.4-3500 mPa s). Nanodroplets with an average diameter of 73 nm were achieved. Moreover, nanofibers with a diameter of 30 nm were obtained using a 4 μm ROC microtip and the necking ratio was as high as 266  1. To the best of our knowledge, this is the smallest droplet or fiber diameter directly obtained via E-Jet printing to date without further physical or chemical processing. This MFEJ printing technique can improve printing resolution at the nanoscale, significantly enlarge the material applicability and effectively avoid nozzle clogging for the fabrication of nanodevices.A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical molecules, in high yields with good to high enantioselectivities.A new multi-functional [2]rotaxane, ROTX, has been synthesized via a Cu(i) catalysed azide-alkyne cycloaddition reaction between Ni(ii) templated azide terminated pseudorotaxane composed of a naphthalene based heteroditopic wheel, NaphMC, and an alkyne terminated stopper. Subsequently, ROTX has been functionalized with pyrene moieties to develop a bifluorophoric [2]rotaxane, PYROTX, having naphthalene and pyrene moieties. Detailed characterization of these two rotaxanes is performed by utilizing several techniques such as ESI-MS, (1D and 2D) NMR, UV/Vis and PL studies. Comparative metal ion sensing studies of NaphMC (a fluorophoric cyclic receptor), ROTX ([2]rotaxane with a naphthyl fluorophore) and PYROTX ([2]rotaxane having naphthyl and pyrene fluorophores) have been performed to determine the effect of dimensionality/functionalization on the metal ion selectivity. Although NaphMC fails to discriminate between metal ions, ROTX serves as a selective sensor for Zn(ii) and Cd(ii). Importantly, PYROTX shows exclusive selectivity towards Zn(ii) over various transition, alkali and alkaline earth metal ions including Cd(ii).A three-dimensional bowl-shaped molecular container based on pentazole was first synthesized. https://www.selleckchem.com/products/dorsomorphin-2hcl.html These containers are sealed and linked by the assembled "molecular plane". Each container has an ovoid cavity occupied by one DMSO guest molecule. The self-assembly of this molecular container will provide opportunities for the use of pentazole in supramolecular chemistry.