https://www.selleckchem.com/products/azd4573.html Atomistic simulations based on the first-principles of quantum mechanics are reaching unprecedented length scales. This progress is due to the growth in computational power allied with the development of new methodologies that allow the treatment of electrons and nuclei as quantum particles. In the realm of materials science, where the quest for desirable emergent properties relies increasingly on soft weakly bonded materials, such methods have become indispensable. In this Perspective, an overview of simulation methods that are applicable for large system sizes and that can capture the quantum nature of electrons and nuclei in the adiabatic approximation is given. In addition, the remaining challenges are discussed, especially regarding the inclusion of nuclear quantum effects (NQEs) beyond a harmonic or perturbative treatment, the impact of NQEs on electronic properties of weakly bonded systems, and how different first-principles potential energy surfaces can change the impact of NQEs on the atomic structure and dynamics of weakly bonded systems.The anisotropy of molecular polarizability in liquid crystals is linked to the birefringence in these substances. The classic methods to compute the polarizabilities of liquid crystals assume an average number density of molecules that is equal in all directions. In the present work, a new model is proposed for the anisotropic molar polarization based on a virtual anisotropy of the number density of molecules in the liquid-crystalline material. This new strategy hence allows for the computation of both the anisotropic polarizabilities and the anisotropic thermal-expansion coefficients of liquid crystals. The model is applied to the liquid crystals 4-n-pentyl-4'-cyanobiphenyl and N-(4-methoxybenzylidene)-4-butylaniline, yielding polarizabilities similar to those reported for these materials. For these nematic liquid crystals, the results imply the existence of a positive the