The origin of Earth's water remains unknown. Enstatite chondrite (EC) meteorites have similar isotopic composition to terrestrial rocks and thus may be representative of the material that formed Earth. ECs are presumed to be devoid of water because they formed in the inner Solar System. Earth's water is therefore generally attributed to the late addition of a small fraction of hydrated materials, such as carbonaceous chondrite meteorites, which originated in the outer Solar System where water was more abundant. We show that EC meteorites contain sufficient hydrogen to have delivered to Earth at least three times the mass of water in its oceans. EC hydrogen and nitrogen isotopic compositions match those of Earth's mantle, so EC-like asteroids might have contributed these volatile elements to Earth's crust and mantle.Fatigue resistance is a key property of the service lifetime of structural materials. Carbon nanotubes (CNTs) are one of the strongest materials ever discovered, but measuring their fatigue resistance is a challenge because of their size and the lack of effective measurement methods for such small samples. We developed a noncontact acoustic resonance test system for investigating the fatigue behavior of centimeter-long individual CNTs. We found that CNTs have excellent fatigue resistance, which is dependent on temperature, and that the time to fatigue fracture of CNTs is dominated by the time to creation of the first defect.Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. https://www.selleckchem.com/products/ipi-549.html Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.The simulation of fermionic systems is among the most anticipated applications of quantum computing. We performed several quantum simulations of chemistry with up to one dozen qubits, including modeling the isomerization mechanism of diazene. We also demonstrated error-mitigation strategies based on N-representability that dramatically improve the effective fidelity of our experiments. Our parameterized ansatz circuits realized the Givens rotation approach to noninteracting fermion evolution, which we variationally optimized to prepare the Hartree-Fock wave function. This ubiquitous algorithmic primitive is classically tractable to simulate yet still generates highly entangled states over the computational basis, which allowed us to assess the performance of our hardware and establish a foundation for scaling up correlated quantum chemistry simulations.Bacteria and archaea are frequently attacked by viruses and other mobile genetic elements and rely on dedicated antiviral defense systems, such as restriction endonucleases and CRISPR, to survive. The enormous diversity of viruses suggests that more types of defense systems exist than are currently known. By systematic defense gene prediction and heterologous reconstitution, here we discover 29 widespread antiviral gene cassettes, collectively present in 32% of all sequenced bacterial and archaeal genomes, that mediate protection against specific bacteriophages. These systems incorporate enzymatic activities not previously implicated in antiviral defense, including RNA editing and retron satellite DNA synthesis. In addition, we computationally predict a diverse set of other putative defense genes that remain to be characterized. These results highlight an immense array of molecular functions that microbes use against viruses.During development and metastasis, cells migrate large distances through complex environments. Migration is often guided by chemotaxis, but simple chemoattractant gradients between a source and sink cannot direct cells over such ranges. We describe how self-generated gradients, created by cells locally degrading attractant, allow single cells to navigate long, tortuous paths and make accurate choices between live channels and dead ends. This allows cells to solve complex mazes efficiently. Cells' accuracy at finding live channels was determined by attractant diffusivity, cell speed, and path complexity. Manipulating these parameters directed cells in mathematically predictable ways; specific combinations can even actively misdirect them. We propose that the length and complexity of many long-range migratory processes, including inflammation and germ cell migration, means that self-generated gradients are needed for successful navigation.Strategies for 21st-century environmental management and conservation under global change require a strong understanding of the biological mechanisms that mediate responses to climate- and human-driven change to successfully mitigate range contractions, extinctions, and the degradation of ecosystem services. Biodiversity responses to past rapid warming events can be followed in situ and over extended periods, using cross-disciplinary approaches that provide cost-effective and scalable information for species' conservation and the maintenance of resilient ecosystems in many bioregions. Beyond the intrinsic knowledge gain such integrative research will increasingly provide the context, tools, and relevant case studies to assist in mitigating climate-driven biodiversity losses in the 21st century and beyond.Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.