https://www.selleckchem.com/products/gdc-0994.html Psoriasis is a chronic inflammatory disease associated with immune system dysfunction that can affect nails, with a negative impact on patient life quality. Usually, nail psoriasis is associated with skin psoriasis and is therefore relatively simple to diagnose. However, up to 10% of nail psoriasis occurs isolated and may be difficult to diagnose by means of current methods (nail biopsy, dermoscopy, video dermoscopy, capillaroscopy, ultrasound of the nails, etc.). Since the nail is a complex biological tissue, mainly composes of hard α-keratins, the structural and morphological techniques can be used to analyze the human fingernails. The aim of this study was to corroborate the information obtained using Raman spectroscopy with those obtained by scanning electron microscopy (SEM) and X-ray diffractometry and to assess the potential of these techniques as non-invasive dermatologic diagnostic tools and an alternative to current methods.This study established the DNA barcoding sequences (matK and rbcL) of three plant species identified in the tribe Clauseneae, namely Clausena excavata, C. harmandiana and Murraya koenigii. The total phenolic and total flavonoid contents, together with the biological activities of the derived essential oils and methanol extracts, were also investigated. Herein, the success of obtaining sequences of these plant using two different barcode genes matK and rbcL were 62.5% and 100%, respectively. Both regions were discriminated by around 700 base pairs and these had resemblance with those of the Clausenae materials earlier deposited in Genbank at a 99-100% degree of identity. Additionally, the use of matK DNA sequences could positively confirm the identity as monophyletic. The highest total phenolic and total flavonoid content values (p less then 0.05) were observed in the methanol extract of M. koenigii at 43.50 mg GAE/g extract and 66.13 mg QE/g extract, respectively. Furthermore, anethole