https://www.selleckchem.com/products/VX-680(MK-0457).html Cellulose is a promising biomass material suitable for high volume applications. Its potential lies in sustainability, which is becoming one of the leading trends in industry. However, there are certain drawbacks of cellulose materials which limit their use, especially their high wettability and low barrier properties, which can be overcome by applying thin coatings. Plasma technologies present a high potential for deposition of thin environmentally friendly and recyclable coatings. In this paper, two different plasma reactors were used for coating two types of cellulose-based substrates with hexamethyldisiloxane (HMDSO). The changes in surface characteristics were measured by atomic force microscopy (AFM), scanning electron microscopy (SEM), surface free energy and contact angles measurements, X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectrometry (SIMS). Successful oleofobization was observed for an industrial scale reactor where pure HMDSO was used in the absence of oxygen.The plant hormone cytokinin (CK) plays central roles in plant development and throughout plant life. The perception of CKs initiating their signaling cascade is mediated by histidine kinase receptors (AHKs). Traditionally thought to be perceived mostly at the endoplasmic reticulum (ER) due to receptor localization, CK was recently reported to be perceived at the plasma membrane (PM), with CK and its AHK receptors being trafficked between the PM and the ER. Some of the downstream mechanisms CK employs to regulate developmental processes are unknown. A seminal report in this field demonstrated that CK regulates auxin-mediated lateral root organogenesis by regulating the endocytic recycling of the auxin carrier PIN1, but since then, few works have addressed this issue. Modulation of the cellular cytoskeleton and trafficking could potentially be a mechanism executing responses downstream of CK signaling. We recently repo