https://www.selleckchem.com/products/sb297006.html Humans are exposed to various xenobiotic electrophiles on a daily basis. Electrophiles form covalent adducts with nucleophilic residues of proteins. Redox signaling, which consists of effector molecules (e.g., kinases and transcription factors) and redox sensor proteins with low pKa cysteine residues, is involved in cell survival, cell proliferation, quality control of cellular proteins and oxidative stress response. Herein, we showed that at a low dose, xenobiotic electrophiles selectively modified redox sensor proteins through covalent modification of their reactive thiols, resulting in activation of a variety of redox signaling pathways. However, increasing the dose of xenobiotic electrophiles caused non-selective and extensive modification of cellular proteins involved in toxicity. Of interest, reactive sulfur species (RSS), such as hydrogen sulfide (H2S), cysteine persulfide (CysSSH), glutathione persulfide (GSSH) and even synthetic polysulfide (e.g., Na2S4), readily captured xenobiotic electrophiles, forming their sulfur adducts, which was associated with inactivation of the electrophiles. Our findings suggest that an adaptive response through redox signaling activation and RSS-mediated electrophile capturing is involved in the regulation of electrophilic stress.The true central aim of pharmaceutical research and education is to strive for the patient's satisfaction, i.e., "for the sake of the patient". Our research focuses to bridge the gap between the ideal and current situation in pharmaceutical science. We also investigated/questioned the united roles of pharmacists and pharmacies, with the ambition of changing the work culture of pharmacists. This paper reviews the history of our research and discusses the future of pharmaceutical research and education.Organoselenium compounds have attracted significant interest because of their use as important reagents in organic syntheses and potential biological acti