https://www.selleckchem.com/products/vvd-214.html We first conducted time-series analysis of mono- and dinucleotide composition for over 10,000 SARS-CoV-2 genomes, as well as over 1500 Zaire ebolavirus genomes, and found clear time-series changes in the compositions on a monthly basis, which should reflect viral adaptations for efficient growth in human cells. We next developed a sequence alignment free method that extensively searches for advantageous mutations and rank them in an increase level for their intrapopulation frequency. Time-series analysis of occurrences of oligonucleotides of diverse lengths for SARS-CoV-2 genomes revealed seven distinctive mutations that rapidly expanded their intrapopulation frequency and are thought to be candidates of advantageous mutations for the efficient growth in human cells.The outbreak of pneumonia caused by a new coronavirus (SARS-CoV-2) occurred in December 2019, and spread rapidly throughout the world. There have been other severe coronavirus outbreaks worldwide, namely, severe acute respiratory syndrome (SARS-CoV) and Middle East respiratory syndrome (MERS-CoV). Because the genetic diversity of coronaviruses renders the design of vaccines complicated, broad spectrum-anti-coronavirus drugs have become a critical approach to control the coronavirus epidemic. Cyclophilin A is an important protein needed for coronavirus replication, and its inhibitor cyclosporine A has the ability to suppress coronavirus on a broad spectrum. CD147-S protein was found to be one route by which SARS-CoV-2 invades host cells, while CD147 was found to play a functional role in facilitating the infection of host cells by SARS-CoV. The CyPA/CD147 interaction may play a critical role in the ability of the SARS-CoV-2 virus to enter the host cells. However, cyclosporine A has immunosuppressive effects, so the conditions for its use as an antiviral drug are limited. As a result, cyclosporine A analogues without immunosuppressive side effects have attr