https://www.selleckchem.com/products/U0126.html received maintenance dialysis spent more time in the hospital and were more likely to be admitted to intensive care units. This finding suggests trade-offs between longer survival and higher intensity of use of health care services as a function of dialysis initiation. Maintenance dialysis may be a proxy for the type of philosophy of care driving increased in-hospital time and intensive care and less use of palliative care.Importance Decades of effort have been devoted to establishing an automated microscopic diagnosis of malaria, but there are challenges in achieving expert-level performance in real-world clinical settings because publicly available annotated data for benchmark and validation are required. Objective To assess an expert-level malaria detection algorithm using a publicly available benchmark image data set. Design, Setting, and Participants In this diagnostic study, clinically validated malaria image data sets, the Taiwan Images for Malaria Eradication (TIME), were created by digitizing thin blood smears acquired from patients with malaria selected from the biobank of the Taiwan Centers for Disease Control from January 1, 2003, to December 31, 2018. These smear images were annotated by 4 clinical laboratory scientists who worked in medical centers in Taiwan and trained for malaria microscopic diagnosis at the national reference laboratory of the Taiwan Centers for Disease Control. With TIME, a convolutional neurarmance (sensitivity, 0.995; specificity, 0.900; AUC, 0.997 [95% CI, 0.993-0.999]), especially in detecting ring form (sensitivity, 0.968; specificity, 0.960; AUC, 0.995 [95% CI, 0.990-0.998]) compared with experienced microscopists (mean sensitivity, 0.995 [95% CI, 0.993-0.998]; mean specificity, 0.955 [95% CI, 0.885-1.000]). Conclusions and Relevance The findings suggest that a clinically validated expert-level malaria detection algorithm can be developed by using reliable data sets.Importance T