Backgrounds and Aims It is well known that angiogenesis contributes to the progression of chronic obstructive pulmonary disease (COPD) by initiating the remodeling of bronchial vasculature. However, the specific molecular mechanisms are incompletely understood. This research aimed to explore whether endostatin, a member of endogenous antiangiogenic proteins, is a biomarker in COPD and plays a role in the angiogenesis of COPD. Methods 100 stable COPD patients, 130 patients with acute exacerbation (AECOPD) and 68 healthy volunteers were recruited in this research. Lung function test was conducted in the healthy people and stable COPD patients. Serum endostatin, C-reactive protein (CRP) and vascular endothelial growth factor (VEGF) of all the subjects were measured by Human Magnetic Luminex Screening Assay. Results Serum endostatin level was significantly higher in stable COPD compared with healthy control and even more in AECOPD patients (P less then 0.001). Besides, stable COPD patients with frequent exacerbation (≥2 exacerbations per year) in the last 1 year had a higher concentration of endostatin in the circulation compared to the patients with less exacerbation (P=0.037). Furthermore, circulatory endostatin was negatively associated with forced expiratory volume in 1 s % predicted (FEV1%pre), an index of lung function in the stable COPD group (P=0.009). Finally, endostatin was positively correlated to serum CRP in COPD group (including stable and AECOPD) (P=0.005) and all the subjects (P less then 0.001), but only associated with VEGF in the total participants (P=0.002), not in the COPD group. Conclusion These results suggested that endostatin is a biomarker for COPD and associated with lower lung function, exacerbation, and systemic inflammation. Endostatin potentially contributes to the pathogenesis of COPD. © 2020 Wu et al.Background Cardiovascular events are, after cancer, the most common cause of death in COPD patients. Arterial stiffness is an independent predictor of all-cause mortality and cardiovascular events. Several cross-sectional studies have confirmed increased arterial stiffness in patients with COPD. Various mechanisms in the development of arterial stiffness in COPD such as reduced lung function or systemic inflammation have been proposed. However, clinical predictors of arterial stiffness that had been reported in cross-sectional studies have not yet been confirmed in a longitudinal setting. We have assessed the course of augmentation index (AIx) - a measure of systemic arterial stiffness - and possible predictors in a cohort of COPD patients over a period of up to 7 years. Methods COPD patients underwent annual AIx measurement by applanation tonometry for a maximum duration of 7 years. Additionally, we performed annual assessments of lung function, blood gases, systemic inflammation, serum lipids and blood pressure. https://www.selleckchem.com/products/gsk-2837808A.html Associations between the course of AIx and potential predictors were investigated through a mixed effect model. Results Seventy-six patients (mean (SD) age 62.4 (7.1), male 67%) were included. The AIx showed a significant annual increase of 0.91% (95% CI 0.21/1.60) adjusted for baseline. The change in diffusion capacity (DLco), low-density lipoprotein (LDL), and high-sensitivity c-reactive protein (hsCRP) was independently associated with the increasing evolution of AIx (Coef. - 0.10, p less then 0.001, Coef. 1.37, p=0.003, and Coef. 0.07, p=0.033, respectively). Conclusion This study demonstrated a meaningful increase in arterial stiffness in COPD over time. A greater annual increase in arterial stiffness was associated with the severity of emphysema (measured by DLco), systemic inflammation, and dyslipidaemia. Clinical Trial Registration www.ClinicalTrials.gov, NCT01527773. © 2020 Roeder et al.Purpose Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by poor airflow. The purpose of this study was to explore the mechanisms involved in the development of COPD. Patients and Methods The mRNA expression profile GSE100281, consisting of 79 COPD and 16 healthy samples, was acquired from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between COPD samples and healthy samples were analyzed using the limma package. Functional enrichment analysis for the DEGs was carried out using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) tool. Furthermore, DEG-compound pairs were predicted using the Comparative Toxicogenomics Database. The KEGG metabolite IDs corresponding to the compounds were also obtained through the MetaboAnalyst pipeline. Based on the diffusion algorithm, the metabolite network was constructed. Finally, the expression levels of key genes were determined using quantitative PCR (qPCR). Results There were 594 DEGs identified between the COPD and healthy samples, including 242 upregulated and 352 downregulated genes. A total of 696 DEG-compound pairs, such as BCL2-C00469 (ethanol) and BCL2-C00389 (quercetin) pairs, were predicted. CYP1B1, VEGFA, BCL2, and CDKN1A were included in the top 10 DEG-compound pairs. Additionally, 57 metabolites were obtained. In particular, hsa04750 (inflammatory mediator regulation of TRP channels)-C00469 (ethanol) and hsa04152 (AMPK signaling pathway)-C00389 (quercetin) pairs were found in the metabolite network. The results of qPCR showed that the expression of CYP1B1, VEGFA, BCL2, and CDKN1A was consistent with that predicted using bioinformatic analysis. Conclusion CYP1B1, VEGFA, BCL2, and CDKN1A may play important functions in the development and progression of COPD. © 2020 Yang et al.Purpose Bradykinesia and muscle weaknesses are common symptoms of Parkinson's Disease (PD) and are associated with impaired functional performance, increased risk of falls, and reduced quality of life. Recent studies have pointed to progressive resistance training (PRT) as an effective method to control and reduce these symptoms, increasing possibilities to treat the disease. However, few studies have focused on assessing the PRT effects in the short-term. Therefore, the present study aimed to assess the short-term PRT effects on people with PD, in order to offer new parameters for a better understanding of its effects, so as an adequation and PRT use as a complementary therapy. Patients and Methods Forty individuals diagnosed with PD from stage 1 to 3 on the Hoehn and Yahr scale took part on the study and were allocated into 2 groups; Training Group (TG) performed a 9-week RT program twice a week, and the Control Group (CG) attended disease lectures. Bradykinesia UPDRS subscale (BSS), knee extensors isokinetic strength, Ten Meters Walk Test (TMW), Timed Up&Go Test (TUG) and 30-Second Chair Stand (T30) were measured before and after the intervention period.