https://www.selleckchem.com/products/rk-24466.html Biotech nanocellulose (bacterial nanocellulose, BNC) is a high potential natural polymer. Moreover, it is the only cellulose type that can be produced biotechnologically using microorganisms resulting in hydrogels with high purity, high mechanical strength and an interconnecting micropore system. Recently, the subject of intensive research is to influence this biosynthesis to create function-determining properties. This review reports on the progress in product design and today's state of technical and medical applications. A novel, dynamic, template-based technology, called Mobile Matrix Reservoir Technology (MMR Tech), is highlighted. Thereby, shape, dimensions, surface properties, and nanonetwork structures can be designed in a process-controlled manner. The formed multilayer materials open up new applications in medicine and technology. Especially medical materials for cardiovascular and visceral surgery, and drug delivery systems are developed. The effective production of layer-structured composites and coatings are important for potential applications in the electronics, paper, food and packaging technologies.Vitexin of Ficus deltoidea exhibits intestinal α-glucosidase inhibitory and blood glucose lowering effects. This study designs oral intestinal-specific alginate nanoparticulate system of vitexin. Nanospray-dried alginate, alginate/stearic acid and alginate-C18 conjugate nanoparticles were prepared. Stearic acid was adopted to hydrophobize the matrix and minimize premature vitexin release in stomach, whereas C-18 conjugate as immobilized fatty acid to sustain hydrophobic effect and drug release. Nanoparticles were compacted with polyethylene glycol (PEG 3000, 10,000 and 20,000). The physicochemical, drug release, in vivo blood glucose lowering and intestinal vitexin content of nanoparticles and compact were determined. Hydrophobization of alginate nanoparticles promoted premature vitexin release. Compactio