The present results suggest that SaHsfA4c increases plant resistance to stress by up-regulating the activities of ROS-scavenging enzyme and the expression of Hsps. Copyright © 2020 Chen, Yu, Li, Wang, Lu, Zhang, Liu, Qiao, Wu, Han and Zhuo.Wheat (Triticum aestivum L) production on the Huang-Huai Plain of China has substantially affected in the past 50 years as a result of the decreasing total solar radiation and sunshine hours. Potassium has a significant effect on improving leaf photosynthesis ability under stress conditions. Five potassium application rates (K), 0 (K0), 50 (K50), 100 (K100), 150 (K150), and 250 (K250) mg K2O kg-1 soil, combined with two shading levels, no shading (NS) and shading at early filling stage for 10 days (SE), were used to investigate the effects of K application on winter wheat growth under SE condition. https://www.selleckchem.com/products/aminooxyacetic-acid-hemihydrochloride.html Under NS condition, the parameters related to chlorophyll fluorescence characteristics, dry matter productivity and grain yields reached the maximum values at a middle K application rate (100 mg K2O kg-1 soil). Shading stress significantly reduced leaf SPAD value, showed negative effects on chlorophyll fluorescence characteristics and reduced grain yield of winter wheat. However, as the result of the interaction of K×S, compared to NS condition, higher K application rate (150 mg and 250 K2O kg-1 soil) was beneficial in terms of achieving a higher grain yield of winter wheat under SE by improving leaf SPAD value, alleviating the damage of SE on the winter wheat photosynthetic system, and increasing fructan content and dry matter translocation percentage. Copyright © 2020 Wang, Zhang, Liang, Han, Han and Tan.Voltage-dependent anion channels (VDACs) are conserved proteins of the mitochondria. We have functionally compared Arabidopsis VDACs using Saccharomyces cerevisiae Δpor1 and M3 yeast system. VDAC (1, 2, and 4) were able to restore Δpor1 growth in elevated temperature, in oxidative and salt stresses, whereas VDAC3 only partially rescued Δpor1 in these conditions. The ectopic expression of VDAC (1, 2, 3, and 4) in mutant yeast recapitulated the mitochondrial membrane potential thus, enabled it to maintain reactive oxygen species homeostasis. Overexpression of these VDACs (AtVDACs) in M3 strain did not display any synergistic or antagonistic activity with the native yeast VDAC1 (ScVDAC1). Collectively, our data suggest that Arabidopsis VDACs are involved in regulating respiration, reactive oxygen species homeostasis, and stress tolerance in yeast. Copyright © 2020 Sanyal, Kanwar, Fernandes, Mahiwal, Yadav, Samtani, Srivastava, Suprasanna and Pandey.Environmental stress factors caused by climate change affect plant growth and crop production, and pose a growing threat to sustainable agriculture, especially for tree crops. In this context, we sought to investigate the responses to climate change of two Prunus rootstocks (GF677 and Adesoto) budded with Catherina peach cultivar. Plants were grown in 15 L pots in temperature gradient greenhouses for an 18 days acclimation period after which six treatments were applied [CO2 levels (400 versus 700 µmol mol-1), temperature (ambient versus ambient + 4°C), and water availability (well irrigated versus drought)]. After 23 days, the effects of stress were evaluated as changes in physiological and biochemical traits, including expression of relevant genes. Stem water potential decreased under drought stress in plants grafted on GF677 and Adesoto rootstocks; however, elevated CO2 and temperature affected plant water content differently in both combinations. The photosynthetic rate of plants grafted on GF677 increasedhange at the physiological, metabolic, and transcriptomic levels in two Prunus rootstocks budded with 'Catherina'. Overall, these results demonstrate the resilient capacity and plasticity of these contrasting genotypes, which can be further used to combat ongoing climate changes and support sustainable peach production. Copyright © 2020 Jiménez, Fattahi, Bedis, Nasrolahpour-moghadam, Irigoyen and Gogorcena.We have previously shown that the human obese adipose tissue (AT) contributes to increased secretion of adipocyte-specific IgG antibodies in individuals with obesity. This occurs without any exogenous stimulation, because the ongoing process of cell death in the obese AT leads to the release of "self" antigens able to induce chronic stimulation of B cells. We have identified several mechanisms responsible for the release of "self" antigens, such as hypoxia, cell cytotoxicity, and DNA damage. In this paper, we confirm and extend our initial observation on a different cohort of individuals, and we show that also the plasma of these individuals is enriched in IgG antibodies with specificities for adipocyte-derived antigens. Adipocyte-specific IgG secreted in the obese AT are significantly correlated with those present in plasma. Using immunoprecipitation and mass spectrometry, we have identified these antigenic specificities. The antigens are almost exclusively intracellular or cell-associated, usually not recognized as "self" antigens, but they are released by cells dying in the AT. We also show for the first time that the adipocytes in the obese AT contribute to the secretion of IgG autoimmune antibodies and this seems to be due to their expression of the antigen-presenting molecules CD1d and, to a much lesser extent, MHC class II, as our mechanistic experiments performed in mice have shown. These results may lead to the development of novel therapeutic strategies to control autoimmunity. Copyright © 2020 Frasca, Diaz, Romero, Garcia, Jayram, Thaller, del Carmen Piqueras, Bhattacharya and Blomberg.The bacterium Flavonifractor plautii (FP), which is found in human feces, has been reported to participate in catechin metabolism in the gut, but this bacterium's effects on immune function are unclear. We assessed the effect of oral administration of FP on the immune response in ovalbumin (OVA) -sensitized mice. We demonstrated that the FP treatment suppressed interleukin (IL)-4 in splenocytes and OVA-specific IgE production in serum from OVA-sensitized mice. Moreover, oral administration of FP augmented CD4+CD25+ T cells and CD103+CD11c+ DCs. In animals of the FP group, the proportion of FP was increased in the mesenteric lymph nodes (MLNs), as was the proportion of Deferribacteres in the cecum. Oral administration of FP may inhibit the Th2 immune response by incorporation into the MLNs and/or by inducing changes in the gut microbiota. Thus, FP may be useful in alleviating antigen-induced Th2 immune responses. Copyright © 2020 Ogita, Yamamoto, Mikami, Shigemori, Sato and Shimosato.