https://www.selleckchem.com/products/Nolvadex.html 05) increased in theta, alpha and beta oscillatory bands of 2 Hz and 10 Hz stimulated rd10 respectively in comparison with sham group. Also, this increase was significantly maintained even after the end of the stimulation period.The present study evaluates how effectively a deep learning based sleep scoring system does encode the temporal dependency from raw polysomnography signals. An exhaustive range of neural networks, including state of the art architecture, have been used in the evaluation. The architectures have been assessed using a single-channel EEG Fpz-Cz from the open source Sleep-EDF expanded database. The best performing model reached an overall accuracy of 85.2% and a Cohen's kappa of 0.8, with an F1-score of stage N1 equal to 50.2%. We have introduced a new metric, δnorm, to better evaluate temporal dependencies. A simple feed forward architecture not only achieves comparable performance to most up-to-date complex architectures, but also does better encode the continuous temporal characteristics of sleep.Clinical relevance - A better understanding of the capability of the network in encoding sleep temporal patterns could lead to improve the automatic sleep scoring.The process of decoding the auditory brain for an acoustic stimulus involves finding the relationship between the audio input and the brain activity measured in terms of Electroencephalography (EEG) recordings. Prior methods focus on linear analysis methods like Canonical Correlation Analysis (CCA) to establish a relationship. In this paper, we present a deep learning framework that is learned to maximize correlation. For dealing with high levels of noise in EEG data, we employ regularization techniques and experiment with various model architectures. With a paired dataset of audio envelope and EEG, we perform several experiments with deep correlation analysis using forward and backward correlation models. In these experiments, we show that