Activation of renin-angiotensin system (RAS) plays a role in bone deterioration associated with bone metabolic disorders, via increased Angiotensin II (AngII) targeting Angiotensin II type 1 receptor/Angiotensin II type 2 receptor (AT1R/AT2R). Despite the wide data availability, the RAS role remains controversial. This study analyzes the feasibility of using the embryonic chick femur organotypic model to address AngII/AT1R/AT2R axis in bone, which is an application not yet considered. Embryonic day-11 femurs were cultured ex vivo for 11 days in three settings basal conditions, exposure to AngII, and modulation of AngII effects by prior receptor blockade, i.e., AT1R, AT2R, and AT1R + AT2R. Tissue response was evaluated by combining µCT and histological analysis. Basal-cultured femurs expressed components of RAS, namely ACE, AT1R, AT2R, and MasR (qPCR analysis). Bone formation occurred in the diaphyseal region in all conditions. In basal-cultured femurs, AT1R blocking increased Bone Surface/Bone Volume (BS/BV), whereas Bone Volume/Tissue Volume (BV/TV) decreased with AT2R or AT1R + AT2R blockade. Exposure to AngII greatly decreased BV/TV compared to basal conditions. Receptor blockade prior to AngII addition prevented this effect, i.e., AT1R blockade induced BV/TV, whereas blocking AT2R caused lower BV/TV increase but greater BS/BV; AT1R + AT2R blockade also improved BV/TV. Concluding, the embryonic chick femur model was sensitive to three relevant RAS research setups, proving its usefulness to address AngII/AT1R/AT2R axis in bone both in basal and activated conditions.A 56-year-old female patient with vertical atrophy of the right posterior mandible was treated adopting an interpositional bone block approach using a cancellous heterologous bone block. Osteotomies of the patient's mandible were performed with the help of dynamic computer-assisted surgery using virtual anatomical patient information obtained from a cone beam computed tomography (CBCT). The use of the dynamic computer-assisted surgery allowed authors to perform the horizontal osteotomy line as planned preoperatively on the CBCT virtual reconstruction, trying to minimize the risks of the inlay technique. No neurological complications were observed after surgery. The inlay technique could benefit from the aid of dynamic navigation technologies in posterior atrophic mandibles, increasing the reproducibility of the technique. A likely safer method for performing osteotomies with the "sandwich" technique in the posterior atrophic mandible is reported.We present SpeakingFaces as a publicly-available large-scale multimodal dataset developed to support machine learning research in contexts that utilize a combination of thermal, visual, and audio data streams; examples include human-computer interaction, biometric authentication, recognition systems, domain transfer, and speech recognition. SpeakingFaces is comprised of aligned high-resolution thermal and visual spectra image streams of fully-framed faces synchronized with audio recordings of each subject speaking approximately 100 imperative phrases. https://www.selleckchem.com/products/fl118.html Data were collected from 142 subjects, yielding over 13,000 instances of synchronized data (∼3.8 TB). For technical validation, we demonstrate two baseline examples. The first baseline shows classification by gender, utilizing different combinations of the three data streams in both clean and noisy environments. The second example consists of thermal-to-visual facial image translation, as an instance of domain transfer.Face morphing and related morphing attacks have emerged as a serious security threat for automatic face recognition systems and a challenging research field. Therefore, the availability of effective and reliable morphing attack detectors is strongly needed. In this paper, we proposed a framework based on a double Siamese architecture to tackle the morphing attack detection task in the differential scenario, in which two images, a trusted live acquired image and a probe image (morphed or bona fide) are given as the input for the system. In particular, the presented framework aimed to merge the information computed by two different modules to predict the final score. The first one was designed to extract information about the identity of the input faces, while the second module was focused on the detection of artifacts related to the morphing process. Experimental results were obtained through several and rigorous cross-dataset tests, exploiting three well-known datasets, namely PMDB, MorphDB, and AMSL, containing automatic and manually refined facial morphed images, showing that the proposed framework was able to achieve satisfying results.The use of ecologically oriented approaches with virtual reality (VR) depicting instrumental activities of daily living (IADL) is a promising approach for interventions on acquired brain injuries. However, the results of such an approach on dementia caused by Alzheimer's disease (AD) are still lacking. This research reports on a pilot randomized controlled trial that aimed to explore the effect of a cognitive stimulation reproducing several IADL in VR on people with mild-to-moderate dementia caused by AD. Patients were recruited from residential care homes of Santa Casa da Misericórdia da Amadora (SCMA), which is a relevant nonprofit social and healthcare provider in Portugal. This intervention lasted two months, with a total of 10 sessions (two sessions/week). A neuropsychological assessment was carried out at the baseline and follow-up using established neuropsychological instruments for assessing memory, attention, and executive functions. The sample consisted of 17 patients of both genders randomly assigned to the experimental and control groups. The preliminary results suggested an improvement in overall cognitive function in the experimental group, with an effect size corresponding to a large effect in global cognition, which suggests that this approach is effective for neurocognitive stimulation in older adults with dementia, contributing to maintaining cognitive function in AD.Benzo[a]pyrene, classified as a Group 1 carcinogen, is metabolized to B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), causing DNA mutations and eventually cancer. Quercetin is a dietary flavonoid abundant in fruits and vegetables. After quercetin intake, quercetin's metabolites isorhamnetin and miquelianin are more highly concentrated than quercetin in the human plasma. In this study, we investigated the molecular mechanisms associated with the cytoprotective effect of quercetin and its metabolites against benzo[a]pyrene from a detoxification perspective. Quercetin and its metabolite isorhamnetin reduced benzo[a]pyrene-induced cytotoxicity, whereas the metabolite miquelianin did not mitigate benzo[a]pyrene-induced cytotoxicity. Moreover, quercetin and isorhamnetin reduced intracellular levels of BPDE-DNA adducts. The formation and elimination of BPDE is mediated by the xenobiotic detoxification process. Quercetin and isorhamnetin increased the gene and protein expression levels of phase I, II, and III enzymes involved in xenobiotic detoxification.