https://www.selleckchem.com/products/Pyroxamide(NSC-696085).html The study of traditional Chinese medicines (TCMs) is receiving increasing attention worldwide because of their contribution to human health. Developing an effective and sustainable method for screening TCMs is highly desired to accelerate the modernization of TCMs. In this work, we report a neutrally charged membrane made of a positively charged polyelectrolyte electrostatically assembled on a negatively charged superhydrophilic nanoporous membrane. The composite membrane possesses stable electroneutrality in a wide pH range and can precisely and nonselectively separate various charged molecules in TCMs with a transmittance higher than 90% for molecules with molecular weight (Mw) 800. In addition, the membrane exhibits a superior antifouling performance, and the recovery ratio observed during a continuous cycling test of a simulated TCM solution was more than 93%. The combination of superhydrophilicity and electroneutrality in a nanoporous membrane provides a new route for designing nanofiltration membranes for highly efficient molecule separation and is promising for screening TCMs.Negative photoconductivity (NPC), a reduction in photoconductivity under light illumination, could provide low power consumption and high-speed frequency response. The NPC has been generally observed in low-dimensional materials, which can be easily affected by the trapping of photocarriers. However, a gradual transition between NPC and positive photoconductivity (PPC) by controlling the light intensity has not been reported. In this study, a gradual and reversible switching between NPC and PPC is achieved in a van der Waals heterostructure of graphene and MoTe2. The initially observed NPC state becomes a PPC state with the increase in light intensity. The switching between NPC and PPC is considered to originate from the hole trapping in MoTe2. The hole trapping can induce a shift in the Fermi level of MoTe2 and thus change