https://www.selleckchem.com/products/olcegepant.html Early olfactory pathway responses to the presentation of an odor exhibit remarkably similar dynamical behavior across phyla from insects to mammals, and frequently involve transitions among quiescence, collective network oscillations, and asynchronous firing. We hypothesize that the time scales of fast excitation and fast and slow inhibition present in these networks may be the essential element underlying this similar behavior, and design an idealized, conductance-based integrate-and-fire model to verify this hypothesis via numerical simulations. To better understand the mathematical structure underlying the common dynamical behavior across species, we derive a firing-rate model and use it to extract a slow passage through a saddle-node-on-an-invariant-circle bifurcation structure. We expect this bifurcation structure to provide new insights into the understanding of the dynamical behavior of neuronal assemblies and that a similar structure can be found in other sensory systems.In many simultaneous localization and mapping (SLAM) systems, the map of the environment grows over time as the robot explores the environment. The ever-growing map prevents long-term mapping, especially in large-scale environments. In this paper, we develop a compact cognitive mapping approach inspired by neurobiological experiments. Mimicking the firing activities of neighborhood cells, neighborhood fields determined by movement information, i.e. translation and rotation, are modeled to describe one of the distinct segments of the explored environment. The vertices with low neighborhood field activities are avoided to be added into the cognitive map. The optimization of the cognitive map is formulated as a robust non-linear least squares problem constrained by the transitions between vertices, and is numerically solved efficiently. According to the cognitive decision-making of place familiarity, loop closure edges are clustered depending