https://www.selleckchem.com/products/piceatannol.html Quantitative analysis has been applied extensively to image processing and interpretation in nuclear cardiology to improve disease diagnosis and risk stratification. This is Part 2 of a two-part continuing medical education article, which will review the potential clinical role for emerging quantitative analysis tools. The article will describe advanced methods for quantifying dyssynchrony, ventricular function and perfusion, and hybrid imaging analysis. This article discusses evolving methods to measure myocardial blood flow with positron emission tomography and single-photon emission computed tomography. Novel quantitative assessments of myocardial viability, microcalcification and in patients with cardiac sarcoidosis and cardiac amyloidosis will also be described. Lastly, we will review the potential role for artificial intelligence to improve image analysis, disease diagnosis, and risk prediction. The potential clinical role for all these novel techniques will be highlighted as well as methods to optimize their implementation. (J Nucl Cardiol 2020).This first-in-human study investigated the safety, biodistribution and radiation dosimetry of the novel 18F-labeled radiohybrid prostate-specific membrane antigen (rhPSMA) positron emission tomography (PET) imaging agent, 18F-rhPSMA-7.3. Methods Six healthy volunteer subjects (3 males, 3 females) underwent multiple whole-body PET acquisitions at scheduled time points up to 248 minutes after the administration of 18F-rhPSMA-7.3 (mean activity 220; range, 210-228 MBq). PET scans were conducted in three separate sessions and subjects were encouraged to void between sessions. Blood and urine samples were collected for up to 4 hours post-injection to assess metabolite-corrected radioactivity in whole blood, plasma and urine. Quantitative measurements of 18F radioactivity in volumes of interest (VOIs) over target organs were determined directly from the PET images at 8 t