https://www.selleckchem.com/EGFR(HER).html peutic protocols that would avert such failure and maximize HIV-1 remission.The pattern of neural activity evoked by a stimulus can be substantially affected by ongoing spontaneous activity. Separating these two types of activity is particularly important for calcium imaging data given the slow temporal dynamics of calcium indicators. Here we present a statistical model that decouples stimulus-driven activity from low dimensional spontaneous activity in this case. The model identifies hidden factors giving rise to spontaneous activity while jointly estimating stimulus tuning properties that account for the confounding effects that these factors introduce. By applying our model to data from zebrafish optic tectum and mouse visual cortex, we obtain quantitative measurements of the extent that neurons in each case are driven by evoked activity, spontaneous activity, and their interaction. By not averaging away potentially important information encoded in spontaneous activity, this broadly applicable model brings new insight into population-level neural activity within single trials.We give an approximate solution to the difficult inverse problem of inferring the topology of an unknown network from given time-dependent signals at the nodes. For example, we measure signals from individual neurons in the brain, and infer how they are inter-connected. We use Maximum Caliber as an inference principle. The combinatorial challenge of high-dimensional data is handled using two different approximations to the pairwise couplings. We show two proofs of principle in a nonlinear genetic toggle switch circuit, and in a toy neural network.One of the hallmarks of cancer is the extremely high mutability and genetic instability of tumor cells. Inherent heterogeneity of intra-tumor populations manifests itself in high variability of clone instability rates. Analogously to fitness landscapes, the instability rates of clonal populations form their