https://www.selleckchem.com/products/Sunitinib-Malate-(Sutent).html 8%) and AgMn (1.1%). The dc magnetization in the FC state shows clear temperature dependence. In addition, the magnetization shows a distinct thermal hysteresis in the temperature regime below the SG transition temperature. On the other hand, the temperature dependence of ac susceptibility has clear frequency dispersion below SG transition in the FC state prepared by cooling the sample in the presence of a dc-bias field. We further distinguish the metastable response of the FC state of canonical SG from the metastable response of the FC state in an entirely different class of glassy magnetic system namely magnetic glass, where the non-equilibrium behavior is associated with the kinetic-arrest of a first order magnetic phase transition.Batteries are commonly considered one of the key technologies to reduce carbon dioxide emissions caused by the transport, power, and industry sectors. We need to remember that not only the production of energy needs to be realized sustainably, but also the technologies for energy storage need to follow the green guidelines to reduce the emission of greenhouse gases effectively. To reach the sustainability goals, we have to make batteries with the performances beyond their present capabilities concerning their lifetime, reliability, and safety. To be commercially viable, the technologies, materials, and chemicals utilized in batteries must support scalability that enables cost-effective large-scale production. As lithium-ion battery (LIB) is still the prevailing technology of the rechargeable batteries for the next ten years, the most practical approach to obtain batteries with better performance is to develop the chemistry and materials utilized in LIBs-especially in terms of safety and commercialization. To this end, silicon is the most promising candidate to obtain ultra-high performance on the anode side of the cell as silicon gives the highest theoretical capacity