https://www.selleckchem.com/products/fgf401.html l lesions.Laboratory-scale bioreactors were used to co-digest spent coconut copra (SCC) and cow urine (CU) as a co-substrate (SCC + CU) in a batch mode under thermophilic condition (45 ± 2°C) in order to enhance biogas production. The effect of CU pretreatment on the performance indicators (biogas and biomethane yields, total solids (TS), and volatile solids (VS) reduction, pH and volatile fatty acids (VFAs) concentrations) were also examined. This was compared with mono-digestion of SCC. The experiment was performed with different mixing ratios in reactors labelled as follows A = 75 g SCC + 5 ml CU; B = 70 g SCC + 10 ml CU; C = 65 g SCC + 15 ml CU; and D (control) = 80 g SCC at a hydraulic retention time of 42 days. Co-digestion (SCC + CU) significantly improved anaerobic digestion (AD) performance resulting in a threefold and fivefold increase in biogas and biomethane production, respectively, with concomitant TS (44.9-57.7%) and VS (55.4-60.3%) removal efficiencies. But for mono-digestion (control experiment), all CU treated and co-digestion assays showed pH stability ranging between 6.6 and 7.4 and VFAs' concentrations ranging from 15-330 mgL-1. By acting as a buffer, CU effectively enhanced the AD performance of SCC as demonstrated in this study.The present article centres on institutions, that is, systems of rules that guide behaviour and interaction of socio-economic actors, and their role in advancing China's circular economy (CE), particularly in waste management (WM). Since the early 2000s, state and non-state actors in China have begun to explore CE ideas in WM resulting in a multitude of related patterns and schemes. In regard to why such systems exhibit different degrees of effectiveness, it appears that much is determined by the institutional arrangements within. Based on several years of field research in China, the article identifies and analyses key institutional ingredients for effective outcomes. Me