https://www.selleckchem.com/products/Mizoribine.html Especially, the high signal-to-viral load ratio (∼10% change in source-drain current and gate voltage) also demonstrates the ultra-sensitivity of the developed MXene-graphene FET sensor. In addition, the specificity of the sensor was also demonstrated by depositing the inactivated influenza A (H1N1) HA virus and the recombinant 2019-nCoV spike protein onto microfluidic channels with opposite antibodies, producing signal differences that are about 10 times lower. Thus, we have successfully fabricated a relatively low-cost, ultrasensitive, fast-responding, and specific inactivated influenza A (H1N1) and 2019-nCoV sensor with the MXene-graphene VSTM.The C1ε = 1.6 standard k - ε equation combined with the steady flamelet model was applied to a methane/dimethyl ether swirl combustion field, and the effects of the dimethyl ether (DME) blending ratio and operating pressure on the flame behavior, including species variation, reaction zone behavior, and flame entrainment, were investigated. The results demonstrated that selected models could better reproduce the trends of the experimental measurements. The downstream reaction zone achieved better calculation accuracy than the outer shear layer of the first recirculation zone. The addition of DME accelerated the accumulation process of H2, O, H, and OH radicals. The intermediate radical CH2O was rapidly developed by the influence of the H extraction rate under a constant fuel volume flow rate. The reaction zone dimensions were approximately linearly and positively correlated with the DME blending ratio, whereas flame entrainment expressed a lower DME concentration dependence in the high-DME mass-dominated system. The operating pressure significantly impacted the distribution of reactive radicals in the turbulent flame; meanwhile, the flame and reaction zone length showed nonlinear inverse behavior with pressure variation, while the thickness of the reaction zone was always