https://www.selleckchem.com/products/pf-8380.html It is becoming clear that RNA exists in the gut lumen and feces in animals and humans. The protocol described below isolates total RNA including microRNAs from fecal samples of animal and human subjects. The aim is to isolate total RNA with high purity and quantity for downstream analyses such as RNA sequencing, RT-PCR, and micro-array. The advantages of this optimized protocol in the miRNA isolation are capabilities of isolating highly purified RNA products with additional washing steps described, increased quantity of RNA obtained with an improved method in the resuspension of sample, and important tips of decontamination. One limitation is the inability to process and purify larger sample of more than 200 mg as these sample sizes would cause a difficulty in the clear formation of the interphase. Consequently, the large sample size may contaminate the aqueous phase to be extracted as described in the protocol with organic matters that affect the quality of RNA isolated in the end. However, RNA isolates from a sample of up to 200 mg are sufficient for most of downstream analyses.The adsorption of biomolecules from surrounding biological matrices to the surface of nanomaterials (NMs) to form the corona has been of interest for the past decade. Interest in the bio-nano interface arises from the fact that the biomolecular corona confers a biological identity to NMs and thus causes the body to identify them as "self". For example, previous studies have demonstrated that the proteins in the corona are capable of interacting with membrane receptors to influence cellular uptake and established that the corona is responsible for cellular trafficking of NMs and their eventual toxicity. To date, most research has focused upon the protein corona and overlooked the possible impacts of the metabolites included in the corona or synergistic effects between components in the complete biomolecular corona. As such, this work demonstr