https://www.selleckchem.com/products/mcc950-sodium-salt.html Iron- and manganese-catalyzed para-selective oxidative amination of (4-R)phenols by primary and secondary anilines was developed. Depending on the identity of the R group, the products of this efficient reaction are either benzoquinone anils (C-N coupling) that are produced via a sequential oxidative amination/dehydrogenation (R = H), oxidative amination/elimination (R = OMe) steps, or N,O-biaryl compounds (C-C coupling) that are formed when R = alkyl through an oxidative amination/[3,3]-sigmatropic rearrangement (quinamine rearrangement) process.Responsive foams and interfaces are interesting building blocks for active materials that respond and adapt to external stimuli. We have used the photochromic reaction of a spiropyran sulfonate surfactant to render interfacial, rising bubbles as well as foaming properties active to light stimuli. In order to address the air-water interface on a molecular level, we have applied sum-frequency generation (SFG) spectroscopy which has provided qualitative information on the surface excess and the interfacial charging state as a function of light irradiation and solution pH. Under blue light irradiation, the surfactant forms a closed ring spiro form (SP), whereas under dark conditions the ring opens and the merocyanine (MC) form is generated. Using SFG spectroscopy, we show that at the interface, different pH conditions of the bulk solution lead to changes in the interfacial charging state. We have exploited the fact that the MC surfactant's O-H group can be deprotonated as a function of pH and used that to tune th velocity when the bubbles were irradiated with blue light compared to the velocity of bubbles with the surfactants in the dark state. Clearly, the light-triggered changes can be used to control foams, rising bubbles, and fluid interfaces on a molecular level which renders them active to light stimuli.Nanocarrier-mediated protein delivery is a promising strate