https://www.selleckchem.com/products/aminooxyacetic-acid-hemihydrochloride.html Eventually, we conduct comprehensive experiments on nine real-world datasets to test the validity of our proposed OCLSP method, and the experimental results demonstrate that our proposed OCLSP method outperforms many state-of-the-art unsupervised feature selection methods in terms of clustering accuracy and normalized mutual information, which indicates that our proposed OCLSP method has a strong ability in identifying more important features.High-dimensional data are highly correlative and redundant, making it difficult to explore and analyze. Amount of unsupervised dimensionality reduction (DR) methods has been proposed, in which constructing a neighborhood graph is the primary step of DR methods. However, there exist two problems 1) the construction of graph is usually separate from the selection of projection direction and 2) the original data are inevitably noisy. In this article, we propose an unsupervised adaptive embedding (UAE) method for DR to solve these challenges, which is a linear graph-embedding method. First, an adaptive allocation method of neighbors is proposed to construct the affinity graph. Second, the construction of affinity graph and calculation of projection matrix are integrated together. It considers the local relationship between samples and global characteristic of high-dimensional data, in which the cleaned data matrix is originally proposed to remove noise in subspace. The relationship between our method and local preserving projections (LPPs) is also explored. Finally, an alternative iteration optimization algorithm is derived to solve our model, the convergence and computational complexity of which are also analyzed. Comprehensive experiments on synthetic and benchmark datasets illustrate the superiority of our method.Existing semisupervised learning approaches generally focus on the single-agent (centralized) setting, and hence, there is the risk of priv