The proposed solution yields performances comparable to those of a spirometer and a two-lead ECG. The whole system, with a realization cost below 100 €, a wireless interface, and several hours (or even days) of autonomy, is a suitable candidate for everyday use, especially if complemented by motion artifact removal techniques, currently under implementation.Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxiiated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.The quality and nutritional value of dietary proteins are determined by the quantity, digestibility and bioavailability of essential amino acids (EAA), which play a critical role in human growth, longevity and metabolic health. Plant-source protein is often deficient in one or more EAAs (e.g., branched-chain amino acids, lysine, methionine and/or tryptophan) and, in its natural form, is less digestible than animal-source protein. Nevertheless, dietary intake of plant-source protein has been promoted because of its potential health benefits, lower cost of production and lower environmental impact compared to animal-source protein. Implementation of dietary strategies that improve both human and planetary health are of critical importance and subject to growing interest from researchers and consumers. Therefore, in this review we analyse current plant protein intake patterns and discuss possible countermeasures that can enhance plant protein nutrition, examples include (1) combining different plant proteins with complementary EAA profiles; (2) identification and commercial cultivation of new and novel high-quality plant proteins; (3) industrial and domestic processing methods; and (4) genome-editing techniques.Vine pruning residues are by-products of the wine industry that have not received much attention in the past, in spite of being rich in bioactive compounds. In this study, we aimed to test whether an ohmic extract of vine pruning residue (VPE) has anti-colorectal cancer (CRC) properties, and whether responses differ according with cell's mutation profile. VPE decreased human CRC cell proliferation, accompanied by DNA effects and cell cycle modulation. VPE also increased cell sensitivity to the chemotherapeutic drug 5-FU. Our results suggest that tumors harboring BRAF mutations may be more responsive to VPE than KRAS mutated tumors. These effects of the extract were not completely reproduced by the most abundant constituents tested individually at the concentrations present in the effective dose of VPE. Globally, our results indicate that VPE, a polyphenol enriched extract produced by ohmic heating of vine pruning residue, has anti-colorectal cancer potential, including sensitizing to a chemotherapeutical drug, and its use in functional foods or nutraceuticals could be exploited in personalized anti colorectal cancer dietary strategies. Valorization of this lignocellulosic residue should encourage bio-waste recycling, adding value to this agricultural by-product and promoting the sustainable use of natural resources.In this work, composite fibers connected in three-dimensional porous scaffolds were fabricated by electrospinning, starting from polycaprolactone and inorganic powders synthesized by the sol-gel method. The aim was to obtain materials dedicated to the field of bone regeneration, with controllable properties of bioresorbability and bioactivity. The employed powders were nanometric and of a glass-ceramic type, a fact that constitutes the premise of a potential attachment to living tissue in the physiological environment. The morphological characterization performed on the composite materials validated both the fibrous character and oxide powder distribution within the polymer matrix. Regarding the biological evaluation, the period of immersion in simulated body fluid led to the initiation of polymer degradation and a slight mineralization of the embedded particles, while the osteoblast cells cultured in the presence of these scaffolds revealed a spatial distribution at different depths and a primary networking tendency, based on the composites' geometrical and dimensional features.Noonan syndrome (NS) is a congenital autosomic dominant condition characterized by a variable spectrum from a clinical and genetical point of view. Germline mutations in more than ten genes involved in RAS-MAPK signal pathway have been demonstrated to cause the disease. An higher risk for leukemia and solid malignancies, including brain tumors, is related to NS. A review of the published literature concerning low grade gliomas (LGGs) in NS is presented. We described also a 13-year-old girl with NS associated with a recurrent mutation in PTPN11, who developed three different types of brain tumors, i.e., an optic pathway glioma, a glioneuronal neoplasm of the left temporal lobe and a cerebellar pilocytic astrocytoma. Molecular characterization of the glioneuronal tumor allowed to detect high levels of phosphorylated MTOR (pMTOR); therefore, a therapeutic approach based on an mTOR inhibitor (everolimus) was elected. https://www.selleckchem.com/products/tegatrabetan.html The treatment was well tolerated and proved to be effective, leading to a stabilization of the tumor, which was surgical removed.