Each year in the United States, influenza causes illness in 9.2 to 35.6 million individuals and is responsible for 12,000 to 56,000 deaths. The U.S. Centers for Disease Control and Prevention (CDC) tracks influenza activity through a national surveillance network. https://www.selleckchem.com/products/vt107.html These data are only available after a delay of 1 to 2 weeks, and thus influenza epidemiologists and transmission modelers have explored the use of other data sources to produce more timely estimates and predictions of influenza activity. We evaluated whether data collected from a national commercial network of influenza diagnostic machines could produce valid estimates of the current burden and help to predict influenza trends in the United States. Quidel Corporation provided us with de-identified influenza test results transmitted in real-time from a national network of influenza test machines called the Influenza Test System (ITS). We used this ITS dataset to estimate and predict influenza-like illness (ILI) activity in the United States over the 2015-2016 and 2016-2017 influenza seasons. First, we developed linear logistic models on national and regional geographic scales that accurately estimated two CDC influenza metrics the proportion of influenza test results that are positive and the proportion of physician visits that are ILI-related. We then used our estimated ILI-related proportion of physician visits in transmission models to produce improved predictions of influenza trends in the United States at both the regional and national scale. These findings suggest that ITS can be leveraged to improve "nowcasts" and short-term forecasts of U.S. influenza activity.[This corrects the article DOI 10.1371/journal.pcbi.1007705.].MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.Genes for which homologs can be detected only in a limited group of evolutionarily related species, called "lineage-specific genes," are pervasive Essentially every lineage has them, and they often comprise a sizable fraction of the group's total genes. Lineage-specific genes are often interpreted as "novel" genes, representing genetic novelty born anew within that lineage. Here, we develop a simple method to test an alternative null hypothesis that lineage-specific genes do have homologs outside of the lineage that, even while evolving at a constant rate in a novelty-free manner, have merely become undetectable by search algorithms used to infer homology. We show that this null hypothesis is sufficient to explain the lack of detected homologs of a large number of lineage-specific genes in fungi and insects. However, we also find that a minority of lineage-specific genes in both clades are not well explained by this novelty-free model. The method provides a simple way of identifying which lineage-specific genes call for special explanations beyond homology detection failure, highlighting them as interesting candidates for further study.A crucial aspect when learning a language is discovering the rules that govern how words are combined in order to convey meanings. Because rules are characterized by sequential co-occurrences between elements (e.g., "These cupcakes are unbelievable"), tracking the statistical relationships between these elements is fundamental. However, purely bottom-up statistical learning alone cannot fully account for the ability to create abstract rule representations that can be generalized, a paramount requirement of linguistic rules. Here, we provide evidence that, after the statistical relations between words have been extracted, the engagement of goal-directed attention is key to enable rule generalization. Incidental learning performance during a rule-learning task on an artificial language revealed a progressive shift from statistical learning to goal-directed attention. In addition, and consistent with the recruitment of attention, functional MRI (fMRI) analyses of late learning stages showed left parietal activity within a broad bilateral dorsal frontoparietal network. Critically, repetitive transcranial magnetic stimulation (rTMS) on participants' peak of activation within the left parietal cortex impaired their ability to generalize learned rules to a structurally analogous new language. No stimulation or rTMS on a nonrelevant brain region did not have the same interfering effect on generalization. Performance on an additional attentional task showed that this rTMS on the parietal site hindered participants' ability to integrate "what" (stimulus identity) and "when" (stimulus timing) information about an expected target. The present findings suggest that learning rules from speech is a two-stage process following statistical learning, goal-directed attention-involving left parietal regions-integrates "what" and "when" stimulus information to facilitate rapid rule generalization.Deep neural networks (DNNs) have achieved state-of-the-art performance in identifying gene regulatory sequences, but they have provided limited insight into the biology of regulatory elements due to the difficulty of interpreting the complex features they learn. Several models of how combinatorial binding of transcription factors, i.e. the regulatory grammar, drives enhancer activity have been proposed, ranging from the flexible TF billboard model to the stringent enhanceosome model. However, there is limited knowledge of the prevalence of these (or other) sequence architectures across enhancers. Here we perform several hypothesis-driven analyses to explore the ability of DNNs to learn the regulatory grammar of enhancers. We created synthetic datasets based on existing hypotheses about combinatorial transcription factor binding site (TFBS) patterns, including homotypic clusters, heterotypic clusters, and enhanceosomes, from real TF binding motifs from diverse TF families. We then trained deep residual neural networks (ResNets) to model the sequences under a range of scenarios that reflect real-world multi-label regulatory sequence prediction tasks.