https://www.selleckchem.com/products/cinchocaine.html 05 2.01, which is better than five state-of-the-art of methods. Additionally, it can also well preserve the information of R-peak. Our method is suitable for near real-time MECG compression on wearable devices.In this article, a novel proportional-integral observer (PIO) design approach is proposed for the nonfragile H∞ state estimation problem for a class of discrete-time recurrent neural networks with time-varying delays. The developed PIO is equipped with more design freedom leading to better steady-state accuracy compared with the conventional Luenberger observer. The phenomena of randomly occurring gain variations, which are characterized by the Bernoulli distributed random variables with certain probabilities, are taken into consideration in the implementation of the addressed PIO. Attention is focused on the design of a nonfragile PIO such that the error dynamics of the state estimation is exponentially stable in a mean-square sense, and the prescribed H∞ performance index is also achieved. Sufficient conditions for the existence of the desired PIO are established by virtue of the Lyapunov-Krasovskii functional approach and the matrix inequality technique. Finally, a simulation example is provided to demonstrate the effectiveness of the proposed PIO design scheme.We consider a human-in-the-loop scenario in the context of low-shot learning. Our approach was inspired by the fact that the viability of samples in novel categories cannot be sufficiently reflected by those limited observations. Some heterogeneous samples that are quite different from existing labeled novel data can inevitably emerge in the testing phase. To this end, we consider augmenting an uncertainty assessment module into low-shot learning system to account into the disturbance of those out-of-distribution (OOD) samples. Once detected, these OOD samples are passed to human beings for active labeling. Due to the discrete nature of this uncer