https://www.selleckchem.com/products/reacp53.html Since it is suggested that the combination of conventional antifungals with lipid rafts-disrupting compounds is a powerful antifungal approach, our data will help to pave the way for the use of bLf alone or in combination for the treatment/eradication of clinically and agronomically relevant yeast pathogens/fungi.The water-soluble non-starch polysaccharides isolated from natural resources have become research hotpots in the field of food science and human health due to widely distributed in nature and low toxicity. It has indicated that the health-promoting effect of water-soluble non-starch polysaccharides were partly attributable to against excessive oxidative stress. Indeed, excessive oxidative stress in the body has been reported in occurrence of disease. The water-soluble non-starch polysaccharides from natural resources exhibit antioxidant activity to against oxidative stress via scavenging free radicals promoting antioxidant enzymes activity and/or regulating antioxidant signaling pathways. In this review, the water-soluble non-starch polysaccharides as medicine agent and the factor affecting antioxidant as well as the relationship between oxidative stress and disease are summarized, and the mechanisms of water-soluble non-starch polysaccharides therapy in disease are also discussed. It will provide a theoretical basis for natural polysaccharides used for the treatment of diseases.Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals