https://www.selleckchem.com/products/climbazole.html Obesity, neurodegenerative diseases, and injury can all lead to cognitive deficits, which can be improved clinically with the implementation of cognitive rehabilitation. Due to a lack of effective cognitive rehabilitation tools in mice, we re-designed a cognitive task utilized to detect problem-solving deficits, to develop a cognitive rehabilitation paradigm for mice. In this study, we developed a modified the Puzzle Box task by exposing B6 mice to a variety of obstacles and assessing the escape latencies. We then combined obstacles in order to create a "complex obstacle" for the problem-solving task. We determined that our task was reproducible in different cohorts of mice. Furthermore, with repetition the mice display an improvement in the performance, evident by a shorter escape latency and the ability to maintain this improvement in performance, indicative of long-term memory. Given that this approach is new, we validated whether this task could successfully detect deficits in a mouse model of cognitive impairment, the high-fat diet mouse. We demonstrate that high-fat diet mice have longer escape latencies when exposed to the complex obstacle compared to standard diet control mice. Taken together, these data suggest that the Puzzle Box is a valid task for cognitive rehabilitation in mice.Synthetic cathinones, which are a group of β-keto analogs of phenethylamine, have been reported as the most emerging new psychoactive substances in the past decade. The quantity and variety of synthetic cathinones have continued to increase, which poses considerable risks to public health and social security. In this study, an analytical method based on liquid chromatography-tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 73 synthetic cathinones and related metabolites in urine. The chromatographic analysis was performed using a Kinetex® Biphenyl column (10 cm ×2.1 mm, 1.7 μm), applying