https://www.selleckchem.com/products/ml-si3.html We discuss how our structural results relate to prohormone processing based on the varied pH environments and lipid compositions of organelle membranes within the regulated secretory pathway, and the likelihood of Cpro survival for cosecretion with IAPP. DATABASE The assigned resonances have been deposited in the Biological Magnetic Resonance Bank (BMRB) with accession numbers 50007 and 50019 for proIAPP and Cpro, respectively. The lowest energy structures have been deposited in the Protein Data Bank (PDB) with access codes 6UCJ and 6UCK. © 2020 Federation of European Biochemical Societies.To tailor cell-surface interactions, precise and controlled attachment of cell-adhesive motifs is required, while any background non-specific cell and protein adhesion has to be blocked effectively. Herein, a versatile and highly reproducible antifouling surface modification based on "clickable" groups and hierarchically structured diblock copolymer brushes for the controlled attachment of cells is reported. The polymer brush architecture combines an antifouling bottom block of poly(2-hydroxyethyl methacrylate) poly(HEMA) and an ultrathin azide-bearing top block, which can participate in well-established "click" reactions including the highly selective copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction under mild conditions. This straightforward approach allows the rapid conjugation of a cell-adhesive, alkyne-bearing cyclic RGD peptide motif, enabling subsequent specific attachment of NIH 3T3 fibroblasts, their extensive proliferation and confluent cell sheet formation after 48 h of incubation. The generally applicable strategy presented in this report can be employed for surface functionalization with diverse alkyne-bearing biological moieties via CuAAC or copper-free alkyne-azide cycloaddition protocols, making it a versatile functionalization approach and a promising tool for tissue engineering, biomaterial implant desi