https://www.selleckchem.com/Proteasome.html The purpose of this paper is to make more people realize the importance of controlling the emissions of bioaerosols in the biofiltration process and to make the treatment of VOCs by biotechnology more environmentally friendly. Additionally, the present work intends to increase people's awareness in regards to the control of bioaerosols, including microbial fragment present in bioaerosols. Bioremediation of Cr(VI) contamination using microorganisms is a promising method for reducing its environmental risks. The objective of this study was to clarify Cr(VI) removal by Penicillium oxalicum SL2 in terms of indirect Cr(VI) reduction by metabolites, interaction sites, and form transformation of chromium. Strain SL2 could sequentially remove Cr(VI) in the bioreactor. Oxalic acid produced by the fungus contributed to Cr(VI) reduction. Scanning transmissiony X-ray microscop (STXM) analysis suggested strain SL2 could partly reduce Cr(VI) to Cr(III) in the cell. Amine, carboxyl, and phosphate groups were related to Cr(VI) removal. Chromium K-edge X-ray absorption near edge structure (XANES) analysis implied Cr(III)-Cys potentially acted as an intermediate for the formation of chromium oxalate complexes during the process of treatment. This study would support the application of strain SL2 in Cr(VI) bioremediation and expand knowledge on the interaction of chromium with fungus. We synthesized a novel material, namely palladized zero-valent zinc (Pd/ZVZ), and investigated its efficiency for the degradation of polybrominated diphenyl ethers (PBDEs). The plated Pd significantly enhances the degradation rate of PBDEs by ZVZ at the optimum loading of 1% by weight. In the Pd/ZVZ system, very few lower BDEs were accumulated during the degradation of 2,2',4,4'- tetrabromodiphenyl ether (BDE-47) and the final product is diphenyl ether, whereas the ZVZ system only debrominates BDE-47 to di-BDE and further debromination becomes very difficult. T