https://www.selleckchem.com/products/talabostat.html 8%) compared to national data regarding infection, thus giving severe AATD a relative risk of 8. 8 (95%CI 5.1-20,0; p less then 0.0001) for symptomatic SARS-CoV-2 infection. Moreover, the relative risk (RR) was higher in AATD patients with pre-existing lung diseases (RR 13.9; 95%CI 8.0-33.6; p less then 0.001), but with a similar death rate (1 in 8, 12.5%) compared to the general population (13.9%; RR 0.9). These preliminary findings highlight the importance of close surveillance in the spread of COVID-19 in patients with severe AATD and underlines the need for further studies into the role of the antiprotease shield in preventing SARS-Cov-2 infection.In this study, semi-rational design based on site-directed saturation mutagenesis and surface charge modification was used to improve the catalytic efficiency of the diacetylchitobiose deacetylase derived from Pyrococcus horikoshii (PhDac). PhDac mutant M14, which was screened by site-directed saturation mutagenesis, showed a ~ 2.21 -fold enhanced catalytic efficiency (kcat/Km) and the specific activity was improved by 70.02%. To keep the stability of glucosamine (GlcN), we reduced the optimal pH of M14 by modifying the surface charge from -35 to -59 to obtain mutant M20, whose specific activity reached 2 -fold of the wild-type. The conversion rate of N-acetylglucosamine (GlcNAc) to GlcN catalyzed by M20 reached 94.3%. Moreover, the decline of GlcN production was slowed down by the reduction of pH when temperature was higher than 50 ℃. Our results would accelerate the process of industrial production of GlcN by biocatalysis.A novel quorum quenching (QQ) strain, Acinetobacter guillouiae ST01, was isolated from a full-scale membrane bioreactor (MBR) and characterized for its QQ activities. Batch reactor studies at lab-scale showed that A. guillouiae ST01 exhibited higher QQ activity against acyl homoserine lactones (AHLs) with an oxo group compared to those without an