https://www.selleckchem.com/Proteasome.html gate the relationships between tool sensing and tool use.The present study investigates the chemical composition, anti-inflammatory, and antihypertensive activities, in vitro, from extracts of Cuphea lindmaniana and Cuphea urbaniana leaves. The extraction was performed ultrasound-assisted, and UHPLC/MS analysis was in positive mode ionization. The anti-inflammatory activity of the extracts and miquelianin were assayed at concentrations 0.001-10 μg/mL by chemotaxis on rat polymorphonuclear neutrophils. The antihypertensive activity was performed by angiotensin-converting enzyme (ACE) inhibition. From the nineteen proposed compounds, six of them are described for the first time in this genus. The extracts displayed antichemotactic effect with a reduction of 100 % of the neutrophil migration, in vitro, in most concentrations. The ACE-inhibition presented results ranging from 19.58 to 22.82 %. In conclusion, C. lindmaniana and C. urbaniana extracts contain a rich diversity of flavonoids and display in vitro anti-inflammatory and antihypertensive potential. Thus, this study could serve as a scientific baseline for further investigation, on developmental novel products with therapeutic actions.Plants continually synthesize and degrade proteins, for example, to adjust protein content during development or during adaptation to new environments. In order to estimate global protein synthesis and degradation rates in plants, we developed a relatively simple and inexpensive method using a combination of 13 CO2 labeling and mass spectrometry-based analyses. Arabidopsis thaliana plants are subjected to a 24-hr 13 CO2 pulse followed by a 4-day 12 CO2 chase. Soluble alanine and serine from total protein and glucose from cell wall material are analyzed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and their 13 C enrichment (%) is estimated. The rate of protein synthesis during the 13 CO2 pulse experiment is defined as