https://www.selleckchem.com/products/bpv-hopic.html Intracellular protein delivery in plant tissues is becoming an important tool for addressing both basic and applied research questions by plant biologists, especially in the era of genome editing. The ability to deliver proteins or protein/RNA complexes into cells allows for producing gene-edited plants that are free of transgene integration in the genome. Here we describe a protocol for the delivery of a protein/gold particle mixture in plant cells through biolistics. The key for the delivery is the drying of the protein/gold suspension directly onto the gene-gun cartridge or macrocarrier. The intracellular protein delivery into plant cells is achieved through the bombardment using the Bio-Rad PDS-1000/He particle delivery device. We termed this methodology "proteolistics."Biotechnological methods for targeted gene transfers into plants are key for successful breeding in the twenty-first century and thus essential for the survival of humanity. Two decades ago, genetic transformation of crop plants was not routine, and it was all but impossible with important cereals such as barley and wheat. The recent focus on crop plant genomics-yet based on the Arabidopsis toolbox-boosted the research for more efficient plant transformation protocols, thereby considerably widened the number of genetically tractable crops. Moreover, modern genome editing methods such as the CRISPR/Cas technique are game changers in plant breeding, though heavily dependent on technical optimization of plant transformation. Basically, there are two successful ways of introducing DNA into plant cells one is making use of a living DNA vector, namely, microbes such as the soil bacterium Agrobacterium tumefaciens that infects plants and naturally transfers and subsequently integrates DNA into the plant genome. The other method uses a direct physical transfer of DNA by means of microinjection, microprojectile bombardment, or polymers such as polyethyle