https://www.selleckchem.com/products/LY2603618-IC-83.html Allostery is among the most basic biological principles employed by biological macromolecules to achieve a biologically active state in response to chemical cues. Although initially used to describe the impact of small molecules on the conformation and activity of protein enzymes, the definition of this term has been significantly broadened to describe long-range conformational change of macromolecules in response to small or large effectors. Such a broad definition could be applied to RNA molecules, which do not typically serve as protein-free cellular enzymes but fold and form macromolecular assemblies with the help of various ligand molecules, including ions and proteins. Ligand-induced allosteric changes in RNA molecules are often accompanied by cooperative interactions between RNA and its ligand, thus streamlining the folding and assembly pathways. This chapter provides an overview of the interplay between cooperativity and allostery in RNA systems and outlines methods to study these two biological principles.Allosteric drugs are ligands that when bound to an allosteric site modify the conformational state of the pharmacological target, leading then to a modification of functional response upon binding of the endogenous ligand. Pharmacological targets are defined as biological entities, to which a ligand/drug binds and leads to a functional effect. Pharmacological targets can be proteins or nucleic acids. Computational approaches such as molecular dynamics (MD) sped up discovery and identification of allosteric binding sites and allosteric ligands. Classical all-atom and hybrid classical/quantum MD simulations can be generalized as simulation techniques aimed at analysis of atoms and molecular motion. Main limitations of MD simulations are related to high computational costs, that in turn limit the conformational sampling of biological systems. Indeed, other techniques have been developed to overcome lim